整数划分
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,
其中n1≥n2≥…≥nk≥1,k≥1。
正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。
例如正整数6有如下11种不同的划分:
6;
5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1。
-
输入
- 第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。 输出
- 输出每组测试数据有多少种分法。 样例输入
-
1 6
样例输出
-
11
【分析】计数DP
题意即求 正整数n划分为不多于n个数相加的形式 的分法。
因此我们可以设dp[i][j],表示 正整数i划分为不多于j个数相加的形式 的分法。然后分以下4种情况讨论即可。
#include <stdio.h>
#define maxn 15
int M,n;
int dp[maxn][maxn]; //dp[i][j]-正整数i划分为不多于j个数相加的形式 的分法
int main()
{
int i,j,ans;
scanf("%d",&M);
while(M--)
{
scanf("%d",&n);
ans=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
//i=1:仅"1=1" j=1:仅"i=i"
if(i==1 || j==1)
dp[i][j]=1;
//i<j:相当于dp[i][i],因为i不可能由多于i个正整数得到
else if(i<j)
dp[i][j]=dp[i][i];
//i>j:根据"恰好划分为j个数相加的形式",分情况讨论
//dp[i-j][j]:恰好划分,j个数均至少为1,相当于"拿走j个1"
//dp[i][j-1]:不恰好划分,相当于"拿走一个j"
else if(i>j)
dp[i][j]=dp[i-j][j]+dp[i][j-1];
//i=j:此时恰好划分的情况仅1种,不恰好划分的情况同上
else
dp[i][j]=1+dp[i][j-1];
}
}
//最后dp[n][n]即为所求
printf("%d\n",dp[n][n]);
}
return 0;
}