NYOJ90. 整数划分(计数DP)

22 篇文章 2 订阅

整数划分

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 
其中n1≥n2≥…≥nk≥1,k≥1。 
正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。 
例如正整数6有如下11种不同的划分: 
6; 
5+1; 
4+2,4+1+1; 
3+3,3+2+1,3+1+1+1; 
2+2+2,2+2+1+1,2+1+1+1+1; 
1+1+1+1+1+1。 

输入
第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。
输出
输出每组测试数据有多少种分法。
样例输入
1
6
样例输出
11

【分析】计数DP

        题意即求 正整数n划分为不多于n个数相加的形式 的分法。

        因此我们可以设dp[i][j],表示 正整数i划分为不多于j个数相加的形式 的分法。然后分以下4种情况讨论即可。

#include <stdio.h>
#define maxn 15
int M,n;
int dp[maxn][maxn];   //dp[i][j]-正整数i划分为不多于j个数相加的形式 的分法 
int main()
{
	int i,j,ans;
	scanf("%d",&M);
	while(M--)
	{
		scanf("%d",&n);
		ans=0;
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				//i=1:仅"1=1" j=1:仅"i=i"  
				if(i==1 || j==1)
					dp[i][j]=1;
				//i<j:相当于dp[i][i],因为i不可能由多于i个正整数得到 
				else if(i<j)
					dp[i][j]=dp[i][i];
				//i>j:根据"恰好划分为j个数相加的形式",分情况讨论
				//dp[i-j][j]:恰好划分,j个数均至少为1,相当于"拿走j个1" 
				//dp[i][j-1]:不恰好划分,相当于"拿走一个j" 
				else if(i>j)
					dp[i][j]=dp[i-j][j]+dp[i][j-1];
				//i=j:此时恰好划分的情况仅1种,不恰好划分的情况同上 
				else
					dp[i][j]=1+dp[i][j-1];
			}
		}
		//最后dp[n][n]即为所求 
		printf("%d\n",dp[n][n]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>