(计数类DP或完全背包问题)整数划分

题目链接:https://www.acwing.com/problem/content/description/902/

题目:

一个正整数 nn 可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中 n1≥n2≥…≥nk。

我们将这样的一种表示称为正整数 n 的一种划分。

现在给定一个正整数 n,请你求出 n 共有多少种不同的划分方法。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示总划分数量。

由于答案可能很大,输出结果请对 1e9 + 7 取模。

数据范围

1≤n≤1000

输入样例:

5

输出样例:

7

分析1: 

其中 n1≥n2≥…≥nk。也就是不考虑顺序。1 + 2 + 1 和 2 + 1 + 1为一种。

所以此题有两种方式。

方式1:计数类DP

方式2:完全背包问题

方式1:

f[i][j]状态表示:总和为i,由j个数组成的方案数。

状态计算:

 所以f[i][j] = f[i - 1][j - 1] + f[i - j][j]

计数类方式的代码实现:

//方法1:计数类DP
# include <iostream>
using namespace std;
const int N = 1010;
const int MOD = 1e9 + 7;

int f[N][N];
int a[N];
int n;

int main()
{
    scanf("%d",&n);
    for(int i = 1; i <= n ; i++)
    {
        scanf("%d",&a[i]);
    }
    f[0][0] = 1; //总和为0,由前0个数组成的方案为1.其他总和为0的方案为0
    for(int i = 1; i <= n ; i++)
    {
        for(int j = 1 ; j <= i ; j++)  // 数的个数一定不会超过i个
        {
            f[i][j] = (f[i - 1][j - 1] + f[i - j][j]) % MOD;
        }
    }
    int res = 0;
    for(int i = 1 ; i <= n ; i++)
    {
        res =(res + f[n][i]) % MOD;
    }
    printf("%d\n",res);
    return 0;
}

方法2:完全背包问题

将这个问题看出背包容器为n,由1~n每个数可以取无限个去组成值为n的方案数。 所以为基本的完全背包问题。 

分析:状态表示和状态计算

f[i][j]的状态表示:前i个数组成和为j的方案数

状态计算:

不要i:f[i - 1][j]

要i:

f[i - 1][j - i ] + f[i - 1][j - 2i] + ... + f[i - 1][j - k * i]

所以f[i][j] =  f[i - 1][j] + f[i - 1][j - i] + f[i - 1][j - 2i]....+f[i - 1][j - ki] 

进行优化:

f[i - 1][j - i] = f[i - 1][j - i] + f[i - 1][j - 2i] + ... f[i - 1][j - ki]

所以f[i][j] = f[i - 1][j] + f[i][j - i] 

完全背包方式的代码实现:

朴素做法:

//方法2:完全背包问题:
# include <iostream>
using namespace std;
const int N = 1010;
const int MOD = 1e9 + 7;
 
int f[N][N];
int a[N];
int n;
 
int main()
{
    scanf("%d",&n);

    f[0][0] = 1;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= n ; j++)
        {
            for(int k = 0 ; k * i <= j ; k++)
            {
                f[i][j] = (f[i][j] + f[i - 1][j - k * i]) % MOD;
            }
        }
    }
    /*
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 1 ; j <= n ; j++)
        {
            printf("%d ",f[i][j]);
        }
        printf("\n");
    }
    */
    printf("%d",f[n][n]);
    return 0;
}

 优化掉一个for()循环后:

//方法2:完全背包问题:
# include <iostream>
using namespace std;
const int N = 1010;
const int MOD = 1e9 + 7;
 
int f[N][N];
int a[N];
int n;
 
int main()
{
    scanf("%d",&n);

    f[0][0] = 1;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= n ; j++)
        {
            f[i][j] = f[i-1][j] % MOD; // 为什么优化为一维空间的时候不需要这句话了呢?这是因为变为一维的时候其实就变成了f[j] = f[j]了,所以可以省略,但是二维的时候不能省略,所以要注意一下。完全背包的一维空间,二维空间模板的区别。
            if(j >= i)
            {
                f[i][j] = (f[i][j] + f[i][j - i]) % MOD;
            }
        }
    }
    
    /*
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 1 ; j <= n ; j++)
        {
            printf("%d ",f[i][j]);
        }
        printf("\n");
    }*/
    
    printf("%d",f[n][n]);
    return 0;
}

最后在优化空间: 

//方法2:完全背包问题:
# include <iostream>
using namespace std;
const int N = 1010;
const int MOD = 1e9 + 7;
 
int f[N];
int a[N];
int n;
 
int main()
{
    scanf("%d",&n);

    f[0] = 1;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= n ; j++)
        {
            f[j] = f[j] % MOD;  // 实际是这样的,但是这样的形式这一行可以省略,并且j可以直接从i开始遍历。
            if(j >= i)
            {
                f[j] = (f[j] + f[j - i]) % MOD;
            }
        }
    }
    
    /*
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 1 ; j <= n ; j++)
        {
            printf("%d ",f[i][j]);
        }
        printf("\n");
    }*/
    
    printf("%d",f[n]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值