[luogu p1434] [SHOI2002]滑雪

传送门

题面

题目描述

Michael 喜欢滑雪。这并不奇怪,因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael 想知道在一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子: 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度会减小。在上面的例子中,一条可行的滑坡为 \(24\)\(17\)\(16\)\(1\)(从 \(24\) 开始,在 \(1\) 结束)。当然 \(25\)\(24\)\(23\)\(\ldots\)\(3\)\(2\)\(1\) 更长。事实上,这是最长的一条。

输入输出格式

输入格式

输入的第一行为表示区域的二维数组的行数 \(R\) 和列数 \(C\)。下面是 \(R\) 行,每行有 \(C\) 个数,代表高度(两个数字之间用 \(1\) 个空格间隔)。

输出格式

输出区域中最长滑坡的长度。

输入输出样例

输入样例 #1

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

输出样例 #1

25

说明

对于 \(100\%\) 的数据,\(1\leq R,C\leq 100\)

分析

这道题看着真是很眼熟,虽然今天是我在luoguAC这道题,可我曾经也在vjudge做过这道题,好像是前年吧,那个时候的我还是辣鸡(现在也是),看到这道题完全是蒙圈的,但现在在看这道题真的是比较简单了。

咳咳,正式开始分析。首先我们可以确定的是,这是一道记忆化搜索,其实也可以理解为dp哈。首先对于每一个点,我们可以确定的是,对于滑雪场上的任何一个点,以它开头都会找到一条路径划完,哪怕无路可走答案也是1。我们把这个点(x,y)的结果记为dp[x][y]。这个值怎么计算呢?其实不难,我们会发现,dp[x][y]的值就是四个方向的dp值的最大值加上一,这就是最优子结构。也就是说:

\[dp_{i,j} = max(dp_{i-1,j},dp_{i+1,j},dp_{i,j-1},dp_{i,j+1})+1 \]

找到了转移方程,我们就可以放心大胆的用了。
至于枚举的顺序,这就是搜索的实现了,我们可以在主函数中遍历每一个值,求他的\(dp_{i,j}\),而在\(dp_{i,j}\)中递归套用以上四个公式,直到无法套为止。umm是不是没咋明白,给你看代码你就明白了。

代码

//umm最近这里一直都没有加水印,太懒了orz
#include <iostream>
#include <cstdio>

const int maxn = 205;
const int dx[4] = {0,0,1,-1};
const int dy[4] = {1,-1,0,0};
//方向数组

int r,c,ans;
int a[maxn][maxn],dp[maxn][maxn];
//基本变量

int max(int a,int b) {
    return a > b ? a : b;
}

bool valid(int x,int y) {//判断超过边界函数
    return x > 0 && y > 0 && x <= r && y <= c;
}

int dfs(int x,int y) {//dfs
    if(dp[x][y]) return dp[x][y];//记忆化
    dp[x][y] = 1;//默认这个点的四个方向都走不了
    for(int i = 0; i < 4; i++) {
        int nxtx = x + dx[i];
        int nxty = y + dy[i];
        if(valid(nxtx,nxty) && a[nxtx][nxty] < a[x][y]) {
            dfs(nxtx,nxty);//找到了一种能走的方案,我们进行递归
            dp[x][y]=max(dp[x][y],dp[nxtx][nxty] + 1);//求得dp
        }
    }
    
    return dp[x][y];
}

int main() {
    scanf("%d %d",&r,&c);
    for(int i = 1; i <= r; i++)
        for(int j = 1; j <= c; j++)
            scanf("%d",&a[i][j]);
    
    for(int i = 1; i <= r; i++)
        for(int j = 1; j <= c; j++)
            ans = max(ans,dfs(i,j));//遍历滑雪场上每一个点

    printf("%d\n",ans);
    return 0;
}

评测结果

AC 100R30948538over.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值