树的直径,树的中心性质整理

本文详细探讨了树的直径和中心的定义及性质,包括直径端点的特征、最远点与直径的关系、直径端点为叶子节点的性质、合并树的直径、存在公共经过点的证明,以及直径的连续段重合性质。此外,还定义了树的几何中心,并证明了其唯一性和特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文中,设树中所有权都是正的。

直径的定义:不经过同一个点两次的最长链。

中心的定义:对于点 \(u\),如果满足所有点到点 \(u\) 距离的最大值最小,则点 \(u\) 是中心。

请注意树的中心和树的重心是两个不同的概念。

本文中 \(u \sim v\) 代表树上 \(u \leftrightsquigarrow v\) 唯一路径的权值。

性质一

如果一个点 \(u\) 在一条直径 \(D\) 上,\(D\) 的端点是 $ s$ 和 $ t$,那么 \({u \leftrightsquigarrow s}\)\({u \leftrightsquigarrow t}\) 中较长的一定是一条从 \(u\) 出发的最长链。

假设存在一条链 \(u \leftrightsquigarrow w\)\(u \leftrightsquigarrow s\)\(u \leftrightsquigarrow t\) 都长。

因为 \(s\)\(u\)\(t\) 依次位于一条链上(直径显然是链),

所以 \(u \leftrightsquigarrow w\) 如果和 \(u \leftrightsquigarrow s\) 有交点,就一定和 \(u \leftrightsquigarrow t\) 无交点(否则会出现环)。

如果 \(u \leftrightsquigarrow w\)\(u \leftrightsquigarrow s\) 没有交点,那么 \(s \leftrightsquigarrow u \leftrightsquigarrow w\) 才应该是直径。

如果 \(u \leftrightsquigarrow w\)\(u \leftrightsquigarrow t\) 没有交点,那么 \(t \leftrightsquigarrow u \leftrightsquigarrow w\) 才应该是直径。

反正无论如何都和 \(D\) 是直径矛盾。命题成立。

性质二

从任意一个点出发,能到达的最远点一定是某条直径的端点。

下面这个图中,我们从 \(x\) 找到最远的点 \(y\),并设原树直径为 \(m \leftrightsquigarrow n\)

性质三

直径的端点一定都是叶子节点。

如果直径的端点不是叶子节点,即有两个出度及以上,那么直径这条链只会占用一个出度,一定可以从另一个出度继续走下去从而达到更长的链。

性质四

用一条边 \({(u, v)}\) 将两棵树 \({T_1}\)\({T_2}\) 连接,合成的新树 \(T\) 的所有直径都只有两种情况:

  • 不经过 \({(u, v)}\),仍为原来 \({T_1}\) 的某条直径,或仍为原来 \({T_2}\) 的某条直径。
  • 经过 \({(u, v)}\),两个端点分别落在 \({T_1}\)\({T_2}\) 中,且分别是 \({T_1}\)\({T_2}\) 中某条直径的某个端点。

不经过 \((u, v)\),即新直径只能在 \(T_1\)\(T_2\) 中走,很明显它必须是 \(T_1\) 的一条直径或 \(T_2\) 的一条直径。

经过 \((u, v)\),则设新直径为 \(s \leftrightsquigarrow u \longleftrightarrow v \leftrightsquigarrow t\)

不妨设 \(s \leftrightsquigarrow u\) 这段在 \(T_1\) 中,\(v \leftrightsquigarrow t\) 这段在 \(T_2\) 中。为符合直径定义,我们期望最大化 \(s \leftrightsquigarrow u\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值