自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

crasher123的博客

人工智能深度学习定制,SCI/EI/核心服务

  • 博客(169)
  • 收藏
  • 关注

原创 如何对目标检测算法RT-DETR进行创新和改进:突破瓶颈,提升性能!

在目标检测的高速发展中,RT-DETR作为DETR(DEtection TRansformer)的高效变体,凭借其优异的性能和较快的推理速度,已经成为许多实际应用中的首选算法。那么,如何在现有RT-DETR的基础上进行创新和改进,进一步提升其性能呢?传统DETR和RT-DETR对于小物体的定位和识别常常不尽如人意,这主要是因为小物体的特征较为模糊,且相较于大物体占据图像的像素较少,容易被忽略。:改进RT-DETR的锚框设计,使用更加动态和灵活的锚框机制,使得模型能够适应不同尺度的目标,尤其是小物体的检测。

2025-06-10 10:46:52 304

原创 目标检测中F1-Score指标的详细解析:深度理解,避免误区

举个例子,在无人驾驶的障碍物检测中,模型的精度(Precision)高可能意味着它能准确地识别前方的障碍物,但如果召回率(Recall)低,意味着它漏掉了许多潜在的障碍物,从而影响到整体的安全性。这种情况显然不可接受。在目标检测的世界里,F1-Score 是一个常被提及的重要评估指标,然而,很多人却对它的具体含义和应用场景了解不深,导致在模型评价时出现误用甚至误判。例如,在某些不平衡数据集上,模型可能会偏向于高召回率而忽略精度,导致不准确的预测,F1-Score则能够在这两者之间找到一个合适的平衡点。

2025-06-10 10:41:11 216

原创 基于深度学习RT-DETR算法的盲人障碍物目标检测:提升盲人出行安全的智能化突破

盲人出行问题一直是社会关注的焦点,尤其是在复杂的城市环境中,盲人面临着无数的障碍物,如路障、行人、车辆等,这些障碍物对他们的出行安全造成了极大的挑战。RT-DETR(Real-Time DEtection Transformer)是一种基于深度学习的目标检测算法,结合了Transformer的高效特性与卷积神经网络(CNN)的强大视觉处理能力,能够实时高效地识别图像中的多个目标。该数据集不仅包含了不同类型的障碍物(如行人、车辆、障碍物等),还包括了不同环境条件下的图像数据(如白天、夜晚、雨天等)。

2025-06-10 10:14:45 569

原创 盲人障碍物YOLOv11训练结果分析

在目标检测任务中,mAP被用作衡量检测模型在不同条件下表现的标准,具体计算方式是通过在不同的IoU(Intersection over Union)阈值下,绘制精度与召回率的曲线图,计算其下方的面积。:表示在IoU阈值从0.5到0.95(步长为0.05)范围内,计算得到的平均mAP值。:指在IoU阈值大于0.5时计算得到的平均mAP,侧重于评估在较低阈值下模型的目标检测能力。:表示正确识别为正类的样本占所有被判定为正类样本的比例。:表示实际为正类的样本中,模型能够正确识别出来的比例。

2025-06-09 23:21:43 92

原创 DL00871-基于深度学习YOLOv11的盲人障碍物目标检测含完整数据集

YOLOv11作为YOLO系列的最新版本,通过其强大的目标检测能力,能够在实时环境中准确、高效地识别和定位障碍物,特别适用于盲人导航系统。尤其是在复杂的城市环境中,盲人面临的障碍物检测问题更加严峻。该数据集包含了各种盲人行走场景中的障碍物图像,包括不同类型的障碍物(如人、车、路障等),以及不同环境条件下的图像(如白天、夜晚、阴雨天等),确保模型在复杂环境下仍能保持高效的检测能力。基于YOLOv11的盲人障碍物检测技术,能够广泛应用于各种盲人辅助出行系统,提升盲人出行的安全性和便捷性。

2025-06-09 23:17:36 677

原创 基于RT-DETR算法的夜间交通车辆与行人目标检测

RT-DETR是深度学习领域中最新的一项突破,它结合了Transformer模型和卷积神经网络(CNN),能够高效、精确地进行目标检测,尤其在低光照条件下表现尤为突出。随着智能交通系统(ITS)的发展,实时、高效的交通监控成为了城市安全管理的重要一环。尤其是在夜间,低光照、复杂天气条件等因素使得传统的目标检测算法面临巨大的挑战,如何在夜间环境中准确地识别车辆和行人,成为智能交通系统中亟待解决的痛点。数据集包含了大量在夜间复杂光照和天气条件下拍摄的交通图像,并对每一张图像中的车辆、行人等目标进行了详细标注。

2025-06-08 11:06:16 404

原创 基于分布式深度学习的移动边缘计算网络卸载

然而,随着设备数量的增加和计算需求的不断提升,如何高效地利用边缘计算资源,实现智能设备的计算任务卸载,成为了亟待解决的难题。通过将深度学习引入到卸载决策中,能够根据任务的特性、网络状况以及边缘计算资源的实时状态,智能化地调整任务的卸载策略,从而大幅提升计算效率、减少延迟,充分利用边缘计算资源。传统的移动边缘计算网络中,设备通常根据预设的规则将任务卸载到边缘服务器上,但这种方法的局限性在于它不能根据实际情况灵活地做出卸载决策。基于分布式深度学习的移动边缘计算卸载技术,具有广泛的应用前景。

2025-06-08 09:30:00 654

原创 基于深度学习的金枪鱼各类别目标检测含完整数据集

在渔业行业,金枪鱼的捕捞和管理一直是一个巨大的挑战,尤其是在大规模渔业作业中,如何精确地识别并分类不同种类的金枪鱼,是提高捕捞效率和保护生态环境的关键。然而,传统的金枪鱼识别方法依赖人工判断,费时费力,且存在很大的误差和漏检问题。金枪鱼的种类繁多,外形相似,甚至在不同的光照、角度下,金枪鱼的外观变化较大,这使得传统方法在准确性和实时性方面存在很大挑战。金枪鱼目标检测的数据集包含了大量的金枪鱼图像,并对图像中的每一只金枪鱼进行了精确的标注,包括金枪鱼的种类、位置和边界框等信息。

2025-06-07 16:55:49 1016

原创 DL00335-基于深度学习YOLOv11的煤矸石检测含完整数据集

而最新版本的YOLOv11,更是对模型进行了进一步优化,提升了检测速度与准确性,成为煤矸石检测的“救星”。在煤矿开采的过程中,煤矸石的处理一直是一个长期困扰矿业企业的问题。煤矸石不仅占据了大量资源,而且还可能对环境造成污染,因此高效精准地检测煤矸石并加以处理,是煤矿安全生产和环境保护中的一项重要任务。煤矸石检测的数据集通常包括不同光照、角度和距离下的煤矸石图像,同时还需标注出煤矸石的具体位置和类别。通过精准高效的煤矸石检测,煤矿企业能够及时清除煤矸石,减少其对环境的污染,同时提高矿山的资源利用率。

2025-06-07 13:04:01 1425

原创 基于深度学习的无人机轨迹预测

随着无人机技术的不断发展,无人机在农业、物流、监控等领域的应用日益广泛。精准的轨迹预测不仅能够提高无人机飞行的效率和安全性,还能在应对复杂环境下的突发状况时做出迅速反应。因此,基于深度学习的无人机轨迹预测已成为当前研究和应用的热门方向。

2025-06-06 15:52:38 1522 1

原创 D00789-焊接火焰检测数据集YOLO标签可转VOC COCO

2025-06-04 15:07:20 117

原创 X00319-基于XGBoost的电网用户窃电检测含数据集

XGBoost是一种基于梯度提升树(GBDT)思想的高效算法,它通过逐步添加决策树来减小模型的预测误差,尤其在处理大规模数据集时表现出色。XGBoost具有高并行性、良好的正则化能力和强大的抗过拟合能力,能够有效处理电网用户窃电检测中的数据不平衡、复杂的非线性关系等问题。电网用户窃电检测通常依赖于电力用户的用电数据集。该数据集包含了用户的基本信息(如用户ID、用电区域等)和用电行为数据(如日用电量、月用电量、时段用电量等)。此外,还会根据历史数据标注出哪些用户存在窃电行为,以供模型进行训练。用电量数据。

2025-06-04 11:11:53 857

原创 电力高空作业安全检测(6)RT-DETR训练结果分析-混淆矩阵

目标检测不仅要判断图像中是否存在目标,还要准确预测目标的位置,因此混淆矩阵在目标检测中的应用相比于传统分类任务更为复杂。具体来说,混淆矩阵不仅反映了模型在正确检测目标方面的能力,还可以揭示模型在误检(假正例)和漏检(假负例)方面的缺陷。通过对混淆矩阵中的各项数据进行分析,我们可以深入理解模型的错误类型,针对性地调整模型,提升其在实际应用中的表现。虽然在目标检测任务中,真负例的关注度通常不如真正例、假正例和假负例高,但它依然是模型评估的一部分,表明模型对没有目标的区域做出了正确的判断。

2025-06-03 17:30:21 213

原创 电力高空作业安全检测(5)RT-DETR训练结果分析-召回率Recall

当置信度阈值较低时,模型会判断出更多的预测结果,尽管许多低置信度的预测结果可能是误判。此时,召回率较高,因为更多的正样本被检测出,但这也可能带来较多的假正例(False Positive)。随着置信度阈值的增大,模型只会保留那些置信度较高的预测,虽然召回率会有所下降,但模型的误判率(即假正例)也会减少。然而,随着置信度阈值的调整,召回率和精确率之间的平衡会发生变化。高召回率意味着较少的正样本被漏检,模型的“召回能力”较强。相反,提高置信度阈值则会减少误判,但可能导致一些真实的正样本被漏检,从而降低召回率。

2025-06-02 21:59:41 327

原创 电力高空作业安全检测(4)RT-DETR训练结果分析-精度Precision

随着阈值的增大,模型会变得更加保守,只保留那些具有较高置信度的预测结果,因此每个类别的检测准确率通常会提高。通过绘制置信度阈值与准确率之间的关系曲线,我们可以直观地看到在不同阈值下,模型的表现如何变化。该曲线的关键在于平衡精确率和召回率,帮助研究人员和工程师在实际应用中根据需求选择合适的阈值,以达到最佳的性能。具体来说,低置信度的真实样本,虽然其判定概率低于设定的阈值,但实际上可能仍然是目标类别的真实实例。这就意味着,在提高准确率的同时,可能会牺牲一部分召回率,因为低置信度的真实样本未能被正确识别。

2025-06-02 21:56:24 234

原创 电力高空作业安全检测(3)RT-DETR模型

RT-DETR-R101 模型则达到了 54.3% 的 AP 和 74 FPS 的推理速度,超越了当时最先进的 YOLOv8 模型,兼顾了速度与精度。通过结合 Transformer 的优势和针对实时性需求的优化设计,RT-DETR 为实现高效、精确的电力高空作业安全目标检测提供了新的思路和解决方案。尽管基于 Transformer 的 DETR 模型在去除 NMS 的同时,提供了更简洁的端到端检测框架,但其高计算成本限制了其在实时检测中的应用。RT-DETR防监控等领域。

2025-05-31 10:45:00 380

原创 电力高空作业安全检测(2)数据集构建

进行安全监测需要大量的图像数据,这些数据需要准确标注不同的安全设备与作业人员行为。为了进行电力高空作业的安全检测,本研究构建了一个专门的数据集,包含了大量来自不同电力高空作业现场的图像。这些图像不仅真实反映了作业现场的具体情况,还包含了不同角度、不同光照下的作业场景,具备了广泛的适用性。的实际图片,确保场景的多样性与代表性。数据的采集覆盖了不同的作业任务,如设备安装、线路检修、维护等,确保了数据集的全面性与多样性。,以识别作业人员的安全装备情况及作业环境,从而实现对电力高空作业安全状态的自动监测和预警。

2025-05-31 09:15:00 790

原创 电力高空作业安全检测(1)研究背景

然而,电力高空作业作为电力生产中不可或缺的一部分,涉及的作业环境复杂且危险,安全问题时常成为电力工程中的重大挑战。随着电力设施的日益复杂化和高空作业任务的增加,如何确保作业人员的安全,减少安全事故的发生,已经成为行业中的迫切需求。本研究旨在通过引入创新的检测技术,提升电力高空作业的安全保障能力,建立完善的安全管理体系,减少事故发生的频率,最终实现电力高空作业的。等现代技术手段,能够实时监控作业现场的安全状况,提升检测效率与准确性,避免因安全隐患造成的重大事故。的研究与应用应运而生。

2025-05-30 09:45:00 264

原创 《计算机仿真》——引领计算机仿真领域的学术前沿

计算机仿真》是由中国航天科工集团公司第十七研究所主办的月刊,致力于计算机仿真及其应用领域的研究与探索。作为国内知名的科技期刊之一,它广泛报道了计算机仿真技术在工程、科学、信息技术等领域的最新研究成果及应用实践。

2025-05-30 09:30:00 189

原创 DL00310-基于深度学习SegFormer的滑坡图像分割代码含数据集

SegFormer不仅为地质学研究人员提供了强大的工具支持,也为智能监测系统的建立和应用提供了新的思路。让我们一起携手,通过深度学习技术,推动滑坡监测和预警系统的智能化发展,迈向更高的科研水平!,减少繁琐的人工操作,提高整体科研效率。无论是大规模数据集的处理,还是复杂地形下的滑坡分析,SegFormer 都能迅速给出精准结果,确保你在科研进程中处于领先地位。模型,融合了 Transformer 的优越性,提供了前所未有的。,提升模型的识别能力与精度,帮助你在研究中获得更加可靠的数据支持。

2025-05-29 17:32:15 374

原创 DL00924-基于深度学习YOLOv11的工程车辆目标检测含数据集

的车辆图像,还提供了标注信息,帮助你在模型训练中获得更高的精度与鲁棒性。让数据成为你的研究利器,助你在工程智能领域的探索中不断迈向新高!中,YOLOv11的深度学习算法能够快速准确地完成目标检测,确保每一辆车辆都被高效识别和标记。,都能以最快的速度和最高的精度完成,节省大量时间,让你将更多精力放在研究的创新和突破上!,旨在帮助你提升工程车辆的识别精度和处理效率,完美适应复杂的工程环境。让我们一起探索更多未知的科研领域,推动技术进步,迈向智能化的新未来!今天,我们为你带来了一款基于深度学习的。

2025-05-29 17:30:29 341

原创 《计算机测量与控制》强烈推荐

🔹 期刊级别:已被JST日本科学技术振兴机构数据库收录(2024),并且是北京大学《中文核心期刊要目总览》中的重要期刊,学术影响力巨大!🔹 主办单位:中国计算机自动测量与控制技术协会精心策划,专注于计算机自动化技术与精密测量控制,内容专业而深入!如果你对计算机测量与控制领域的最新发展和技术趋势感兴趣,那就不容错过这本权威期刊——《计算机测量与控制》!无论你是从事测量技术、自动化控制领域的科研人员,还是刚入门的研究生,这本期刊将成为你科研探索的得力助手!📌 国内刊号:CN 11-4762/TP。

2025-05-28 22:09:40 184

原创 DL00916-基于深度学习的金枪鱼各类别目标检测含完整数据集

其中涵盖了金枪鱼的多个品种和不同的环境场景。无论是在学术研究,还是行业应用中,数据集的全面性和高质量将为你的研究工作提供强有力的支持。中,系统能够自动标记出不同类别的金枪鱼,保证识别过程中的高准确性,极大提高了科研数据的处理速度和精度。在繁重的科研任务中,系统的自动化处理可以节省大量时间,让科研人员可以集中精力在更加关键的研究问题上,提升科研效率。基于深度学习的金枪鱼目标检测技术,不仅能够识别不同种类的金枪鱼,还能高效地区分其细微特征。随着深度学习模型在目标检测中的应用不断深化,基于该系统的。

2025-05-28 20:51:24 824

原创 推荐神刊~《计算机与数字工程》

领域的学者与学生,必备的参考资料!无论是选题方向还是研究数据,都能为你的科研提供充足的支持和灵感!的期刊来丰富你的研究内容吗?那你绝对不能错过《计算机与数字工程》!精心打造,凭借雄厚的科研背景,保证期刊内容的。等主流平台收录,确保学术价值和广泛传播!让我们一起紧跟科技潮流,迈向成功!:每月更新,持续为你带来。,让你走在科技最前沿!

2025-05-27 11:20:33 346

原创 DL00914-基于RT-DETR算法的安检X光刀具检测含数据集

传统的安检手段往往效率低下且容易出现误检和漏检,特别是在处理X光图像时,人工检测容易出现疲劳和失误。现在,基于,为你带来和,让安检变得更智能、更可靠。

2025-05-27 09:30:00 816

原创 YOLOv11助力地铁机场安检!!!一键识别刀具

在传统的安检过程中,X光图像分析通常依赖人工判断,不仅工作负担大,而且准确性和效率受限,特别是面对复杂多变的违禁物品形态时,容易出现漏检、误检的情况。基于此,**“基于人工智能的安检X光危险品刀具检测”**这一研究应运而生,旨在利用YOLOv11等深度学习技术,结合高质量的X光图像数据,开发出一个自动化的安检系统。在这一背景下,人工智能(AI)技术,尤其是深度学习和计算机视觉技术,作为当前最前沿的技术之一,为安检领域带来了巨大的变革机会。,特别是在X光图像的自动化分析方面,具有极大的潜力和优势。

2025-05-26 16:27:42 359

原创 DL00347-基于人工智能YOLOv11的安检X光危险品刀具检测含数据集

🚨💡在安全领域,效率与精准度的要求从未如此迫切。作为科研人员,是否一直在寻找一款可以提升安检准确率、减少人工干预、提升检测速度的智能工具?今天,我们为你带来了基于技术的,让安检工作从此不再依赖人工反复确认,全面提升系统智能化水平!🚀。

2025-05-26 16:12:27 449

原创 M00282-P2并联混合动力电动汽车的电池充电持续能源管理系统

我们设计的控制器通过初始化最优的等效因子,并根据当前电池状态(SoC)与目标值之间的接近度动态调整,确保在系统远离目标时能快速收敛,而当接近目标时又能保持稳定性。无论是平稳的速度变化,还是不同坡度的上坡与下坡情境,我们的控制器都能精准适应,保障每一个驾驶周期中的能源利用最大化。那你绝对不能错过我们为你精心设计的控制器实现方案!更妙的是,我们通过调整控制器参数,使得电池充电状态接近上限时,系统自动减少等效因子的数值,充分利用回收能量,在不突破电池限制的前提下,完美结合驾驶周期,帮助电动汽车更高效地运行!

2025-05-24 14:54:29 445

原创 DL00912-基于自监督深度聚类的高光谱目标检测含数据集

这款系统通过最先进的自监督学习技术,结合深度聚类算法,不仅大大提升了高光谱图像目标检测的准确性和效率,更能有效减少对人工标注数据的依赖。此外,我们为您精心准备了丰富的高光谱数据集,涵盖多个领域和应用场景,确保您在实验和研究中能够获得丰富、可靠的数据支持。选择这款基于自监督深度聚类的高光谱目标检测系统,您将获得更高效的研究工具、更精准的检测结果以及更广泛的应用支持,助力您在科研工作中取得突破性进展。在科研的道路上,数据的获取与分析无疑是成功的关键。立即加入,让科研工作变得更智能、更高效!

2025-05-23 15:37:37 327

原创 DL00971-用于高光谱图像分类的双选择融合Transformer网络含数据集

这款模型结合了先进的Transformer架构和双选择融合机制,能够有效处理高光谱图像中的复杂数据,极大提升分类精度。传统的图像分类方法往往难以充分挖掘高光谱数据的潜力,而我们的双选择融合方法,通过同时利用空间信息和光谱信息,精准地捕捉图像特征,提高了分类结果的可靠性和稳定性。无论你是从事遥感监测、环境研究,还是农业监控,这套数据集和模型都能为你的研究提供强大的支持。在高光谱图像分类领域,如何实现高精度、高效率的分类一直是科研人员面临的挑战。,正是为了解决这一问题,特别适用于高光谱图像的分类任务。

2025-05-23 10:15:00 215

原创 DL00786-基于RTDETR的水稻病害检测含完整数据集

该系统采用了RT-DETR模型,能够在复杂的环境中高效识别水稻病害,并且具备极高的鲁棒性,无论是光照变化、角度不同,还是病斑与背景的复杂情况,都能稳定输出准确的检测结果。为了解决这一问题,我们推出了基于RT-DETR的水稻病害检测系统,结合了最新的深度学习算法,能够精准、快速地识别水稻病害。包含多种水稻病害图像,数据集经过精心标注,涵盖了常见的水稻病害类型,适用于模型训练与测试。选择基于RT-DETR的水稻病害检测系统,提升您的研究效率,突破传统检测瓶颈,为农业科研贡献更高效、更智能的解决方案!

2025-05-22 16:28:55 534

原创 DL00967-通过伪样本合成进行零样本侧扫声纳图像分类含完整数据集

通过创新的伪样本合成技术,我们能够在缺乏标注数据的情况下,生成具有高代表性的伪样本数据,极大地丰富了训练集。尤其是在侧扫声纳图像分类中,获取充足的标注数据往往非常困难,影响了研究的进展与结果的准确性。为进一步提升使用体验,我们还提供了完整的数据集,涵盖多种场景与应用,为您的研究提供坚实的基础。无论您是进行环境监测、海洋探测还是其他相关领域的研究,我们的解决方案都能为您提供强有力的支持。无需担心数据瓶颈,从现在开始,利用我们的伪样本合成技术,让零样本图像分类不再是难题。

2025-05-22 15:36:14 187

原创 DL00988-稀疏增强数据transformer船舶AIS轨迹预测含完整数据集

作为研究生和科研人员,是否在进行船舶轨迹预测时遇到数据稀疏、轨迹复杂等问题?现在,我们为你提供一款基于。的船舶AIS轨迹预测工具,帮助你突破科研中的技术难题!,让你的科研工作更高效、更精准!

2025-05-21 21:02:56 388

原创 DL00987-基于深度学习YOLOv11的红外鸟类目标检测含完整数据集

针对科研人员,尤其是研究生们,是否在鸟类目标检测中遇到过数据不够精准、处理困难等问题?现在,我们为你提供一款基于深度学习YOLOv11的。,让你的科研工作更高效、更精准!,帮助你轻松解决这些难题!

2025-05-21 20:49:05 552

原创 DL00981-基于深度学习传感器无人机轨迹异常识别含代码数据集

作为研究生或科研人员,是否在无人机轨迹分析时遇到过如何高效识别异常的问题?,助力你的科研工作,提升数据分析效率!,正是你所需要的解决方案!立即获取这款基于深度学习的。

2025-05-20 23:22:49 195

原创 DL00954-无监督学习的玻璃瓶缺陷检测代码数据集

如果你正在进行缺陷检测、图像处理或质量控制相关研究,那么这套无监督学习的玻璃瓶缺陷检测代码与数据集,将为你的科研工作提供强大的技术支持。无需人工标签,自动学习:通过无监督学习方法,模型能够自动从大量未标注的数据中提取特征,识别并分类玻璃瓶上的各种缺陷,如裂纹、气泡、划痕等。多场景应用:无论是在实验室研究,还是在实际工业生产线上的缺陷检测任务,基于无监督学习的模型都能提供卓越的性能。这款基于无监督学习的玻璃瓶缺陷检测代码与数据集,将为你提供一个高效的工具,助力你的科研项目和实际应用。

2025-05-20 10:30:00 708

原创 DL00956-基于DeeplabV3+的手机屏幕缺陷检测油渍斑点裂缝代码数据集

在图像处理和质量控制领域,手机屏幕上的各种缺陷(如油渍、斑点、裂缝等)一直是科研工作中的重要研究方向。为了帮助科研人员高效解决这一问题,我们推出了。这套工具将大大提升你的研究效率,助力精准检测。

2025-05-20 10:30:00 470

原创 DL00923-基于RT-DETR的河道垃圾检测含完整代码数据集

随着环保问题的日益严峻,河道垃圾污染成为了亟待解决的重要问题。传统的人工检测方式不仅费时费力,而且难以实现实时、高效的垃圾监控。为了应对这一挑战,我们推出了,并提供完整的,助力开发者与环保工作者快速构建智能化的垃圾检测系统,提升河道治理效率。

2025-05-19 09:45:00 403

原创 基于深度学习的手机屏幕缺陷分割模型

在科研过程中,图像处理和数据分析是至关重要的部分,而随着深度学习的飞速发展,越来越多的研究领域开始依赖这一技术来提高效率和精度。如果你在进行图像处理、缺陷检测或与手机屏幕质量相关的研究工作,那么,将是你工作中的得力助手。

2025-05-19 09:15:00 285

原创 到底什么是消融实验?一文给你彻底讲明白

消融实验是一种非常有效的工具,帮助研究人员深入了解模型或系统各个组件的贡献及其重要性。通过系统地消除某些部分,可以为模型设计和优化提供清晰的指导,确保最终得到高效、精确的模型。

2025-05-18 13:49:39 993

resnet18训练权重 resnet18-f37072fd

resnet18训练权重 resnet18-f37072fd

2025-05-10

在 TensorFlow 中进行多 GPU 训练,可以通过 tf.distribute.Strategy 来实现 TensorFlow 提供了多个策略来支持分布式训练,其中 MirroredStrat

代码详细说明 GPU 设置: 使用 tf.config.experimental.list_physical_devices('GPU') 检查可用的 GPU。 使用 tf.config.experimental.set_memory_growth(gpu, True) 设置 TensorFlow 按需分配 GPU 内存,避免占用全部 GPU 内存。 MirroredStrategy: tf.distribute.MirroredStrategy 是 TensorFlow 提供的一个多 GPU 训练策略,利用数据并行来训练模型。每个 GPU 上会创建一个模型副本,并在每个副本上进行计算。 strategy.num_replicas_in_sync 返回同步的副本数,即可用的 GPU 数量。 数据处理: 加载 MNIST 数据集,并将像素值缩放到 [0, 1] 范围内。 将数据转换为 TensorFlow 数据集,并使用 .batch(64) 来设置每个批次的大小。使用 shuffle 来打乱数据,增强训练效果。 模型定义: 创建一个简单的卷积神经网络(CNN),包括卷积层、池化层、Flatten 层和全连接层。 在 strategy.scope() 内部创建模型,这样才能确保在所有 GPU 上同步训练。 模型编译与训练: 使用 Adam 优化器,并设置交叉熵损失函数 SparseCategoricalCrossentropy,适用于分类任务。 训练模型 5 个 epoch,并使用验证集进行验证。 模型评估: 使用 model.evaluate() 来评估训练后的模型在测试集上的表现。 3. 注意事项 内存管理:在使用多 GPU 时,TensorFlow 默认会尝试分配所有 GPU 内存。可以通过 tf.config.experimental.set_memory

2025-05-10

在 PyTorch 中进行多 GPU 训练,可以利用 torch.nn.DataParallel 或者 torch.nn.parallel.DistributedDataParallel 来实现

代码讲解 定义模型: SimpleModel 是一个简单的全连接神经网络,包含两层全连接层(fc1 和 fc2)。 检查设备: 使用 torch.cuda.is_available() 来检查是否有可用的 GPU。然后选择 cuda 或者 cpu 作为设备。 如果有多个 GPU,可以使用 nn.DataParallel 来并行训练。DataParallel 会自动把模型分配到多个 GPU,并在每个 GPU 上执行前向和反向传播。 准备数据: 使用 TensorDataset 和 DataLoader 来加载数据。在这个例子中,我们生成了随机的数据 x_train 和 y_train。在实际情况中,你可以用真实数据替换这些数据。 模型训练: 在训练过程中,每个 mini-batch 会被送到模型,计算损失,进行反向传播和优化步骤。 model(inputs) 会自动在多个 GPU 上并行处理,并合并结果。 多 GPU 支持: nn.DataParallel(model) 会自动将模型复制到每个 GPU 上,并在多个 GPU 上并行处理输入数据。 model.to(device) 将模型移动到当前选择的设备(GPU 或 CPU)。 在每个批次的训练中,我们将数据移动到 GPU(inputs.to(device) 和 labels.to(device)),确保数据和模型都在同一设备上。 注意事项 DataParallel vs DistributedDataParallel:DataParallel 适用于较简单的多 GPU 设置,适合小规模并行训练。对于大规模训练,建议使用 DistributedDataParallel,因为它在性能和扩展性上更好,但实现稍微复杂。 批量大小:使用多 GPU 时,每个 GPU 会处理一个 mini-batch 的一部分,所以你可能需

2025-05-10

为了实现 CoppeliaSim(以前称为 V-REP)机械臂联调,首先,你需要确保你已经安装了 CoppeliaSim 和它的 Python API 你可以从 CoppeliaSim 官网下载并安装

代码讲解 连接到 CoppeliaSim: 使用 sim.simxStart() 来连接到 CoppeliaSim 服务器。clientID 是连接的唯一标识符。 sim.simxFinish(-1) 用于关闭所有旧的连接,确保没有残留的连接。 获取机械臂的句柄: 使用 sim.simxGetObjectHandle() 获取机械臂的关节句柄。句柄是 CoppeliaSim 中唯一标识一个对象的标识符。 移动机械臂到目标位置: 使用 sim.simxSetJointTargetPosition() 设置机械臂各个关节的目标位置。你需要根据目标角度传递弧度值。 读取机械臂的关节位置: 使用 sim.simxGetJointPosition() 获取机械臂各关节的当前角度。 控制流程: 在 main() 函数中,首先建立与 CoppeliaSim 的连接,获取机械臂的关节句柄,然后设置目标角度并控制机械臂移动到目标位置。 最后,等待几秒钟后读取当前的关节角度。 注意事项 CoppeliaSim 模型中的对象命名:模型中的机械臂关节名称通常是 Joint1、Joint2、Joint3 等。如果你的模型中使用了不同的名称,请根据实际情况修改代码中的名称。 目标角度单位:此示例中使用的是弧度,确保目标角度与你的模型单位一致。 调试与测试:可以通过调试模式查看 CoppeliaSim 是否在执行过程中遇到了错误,并且要确保机械臂模型已经正确加载并启动仿真。

2025-05-10

要进行无人机轨迹预测,我们可以利用历史位置数据来预测无人机未来的位置 假设你有一个包含无人机历史飞行数据的CSV文件,这些数据包含时间戳、经度、纬度、速度、航向等信息 我们将使用机器学习方法来进行轨迹

代码解释 数据加载与预处理 (load_data 函数): 从CSV文件加载无人机数据,假设数据包含时间戳、经度、纬度、速度、航向等信息。 时间戳列转换为datetime类型,方便后续处理。 特征工程 (feature_engineering 函数): 计算时间差、速度差和航向差作为额外的特征,帮助模型理解动态变化。 删除缺失值(NaN),因为diff()函数会生成NaN。 使用经度、纬度、速度、航向以及它们的差值来构建特征集X,目标是预测下一时刻的经纬度y。 数据拆分 (split_data 函数): 将数据分为训练集和测试集,80%的数据用于训练,20%的数据用于测试。 模型训练 (train_model 函数): 使用随机森林回归模型进行训练。你也可以尝试其他回归模型,如支持向量回归(SVR)或神经网络等。 模型评估 (evaluate_model 函数): 使用均方误差(MSE)来评估模型的预测性能,并通过图表显示实际位置与预测位置的对比。 进行预测 (make_predictions 函数): 使用训练好的模型预测未来的无人机位置。

2025-05-09

一个用于船舶AIS(自动识别系统)数据预测的Python脚本需要一定的背景知识,包括数据处理、机器学习模型的训练和预测过程 AIS数据通常包括船舶的定位、速度、航向等信息

代码解释 数据加载与预处理 (load_data 函数): 我们从CSV文件中加载数据,假设数据包含船舶的时间戳、经度、纬度、速度和航向信息。 将时间戳转换为datetime类型,方便后续处理。 特征工程 (feature_engineering 函数): 通过计算每两次记录之间的时间差(time_diff),将时间差作为模型的一个输入特征。 选择经度、纬度、速度、航向和时间差作为输入特征,并选择经纬度作为目标进行预测。 数据拆分 (split_data 函数): 将数据分为训练集和测试集,80%的数据用于训练,20%的数据用于测试。 模型训练 (train_model 函数): 使用随机森林回归模型训练数据。 模型评估 (evaluate_model 函数): 使用均方误差(MSE)来评估模型的性能,并通过图表可视化实际位置与预测位置的对比。 进行预测 (make_predictions 函数): 使用训练好的模型预测船舶在下一时刻的位置。

2025-05-09

其中`YOLO()`中可以为预训练权重`pt`的路径或模型`yaml`文件的路径 `data`为数据配置文件地址 `use-ray`是一个专为提高效率和灵活性而设计的超参数调优库,它支持各种搜索策略、

其中`YOLO()`中可以为预训练权重`pt`的路径或模型`yaml`文件的路径。`data`为数据配置文件地址。`use_ray`是一个专为提高效率和灵活性而设计的超参数调优库,它支持各种搜索策略、并行处理以及提前停止策略,并且可以自定义调优。`epochs`为模型训练轮次。`iterations`为调优迭代多少次。`plots、save、val`为`False`指跳过绘图、检查点和验证(最后一个历元除外),以加快调整速度。

2025-05-09

CoppeliaSim 4.5.1的Edu版本 windows 10安装包,可进行机械臂 模拟

CoppeliaSim 4.5.1的Edu版本 windows安装包,可进行机械臂 模拟

2025-05-09

目标检测YOLOv11n权重文件

目标检测YOLOv11n权重文件

2025-05-04

YOLOv11l权重文件

YOLOv11l权重文件

2025-02-23

YOLOv11m权重文件

YOLOv11m权重文件

2025-02-23

yolov11s权重文件

yolov11s权重文件

2025-02-23

yolov11n权重文件

yolov11n权重文件

2025-02-23

DGL pip whl文件 dgl-1.1.1-cp38-cp38-win-amd64.whl

Deep Graph Library是一个python库,用于在现有的深度学习框架(例如PyTorch和MXNet)上轻松实现图神经网络模型。

2023-07-02

YOLOv8预训练权重文件集合(YOLOv8n,YOLOv8s,YOLOv8m,YOLOv8l,YOLOv8x)

YOLOv8预训练权重文件集合(YOLOv8n,YOLOv8s,YOLOv8m,YOLOv8l,YOLOv8x) YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset. Model size (pixels) mAPval 50-95 Speed CPU ONNX (ms) Speed A100 TensorRT (ms) params (M) FLOPs (B) YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 YOLOv8l 640 52.9 375.2 2.39 43.7 165.2 YOLOv8x 640 53

2023-06-23

常见的tensorflow-gpu2.x缺失dll(cublas64-11.dll&cublasLt64-11.dll等)

>>> import tensorflow as tf >>> tf.config.list_physical_devices('GPU') 2023-06-09 22:23:25.593906: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found 2023-06-09 22:23:25.594619: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublasLt64_11.dll'; dlerror: cublasLt64_11.dll not found 2023-06-09 22:23:25.595266: W tensorflow/stream_executor/platform

2023-06-09

MIFS算法MATLAB实现

MIPS(Mean Inter-Point Squared Distance)是机器学习中常用的聚类算法之一,它通过计算聚类中所有数据点互相之间的距离来确定聚类中心。这里是MIPS算法的MATLAB实现过程

2023-06-08

OpenMP: Monte Carlo Simulation Code

OpenMP蒙特卡洛实验代码 Monte Carlo simulation is used to determine the range of outcomes for a series of parameters, each of which has a probability distribution showing how likely each option is to happen. In this project, you will take a scenario and develop a Monte Carlo simulation of it, determining how likely a particular output is to happen. Clearly, this is very parallelizable -- it is the same computation being run on many permutations of the input parameters. You will run this with OpenMP,

2023-06-08

CUDA: Monte Carlo simulation

Monte Carlo simulation 蒙特卡洛实验CUDA实现 Monte Carlo simulation is used to determine the range of outcomes for a series of parameters, each of which has a probability distribution showing how likely each option is to happen. In this project, you will take a scenario and develop a Monte Carlo simulation of it, determining how likely a particular output is to happen. Clearly, this is very parallelizable -- it is the same computation being run on many permutations of the input parameters.

2023-06-08

Web3拍卖智能合约示例以及说明

Web3拍卖智能合约示例以及说明

2023-06-08

气象研究必备pip库:netCDF4-1.5.8-cp37-cp37m-win-amd64

气象研究必备pip库:netCDF4-1.5.8-cp37-cp37m-win-amd64

2023-06-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除