- 博客(169)
- 收藏
- 关注
原创 如何对目标检测算法RT-DETR进行创新和改进:突破瓶颈,提升性能!
在目标检测的高速发展中,RT-DETR作为DETR(DEtection TRansformer)的高效变体,凭借其优异的性能和较快的推理速度,已经成为许多实际应用中的首选算法。那么,如何在现有RT-DETR的基础上进行创新和改进,进一步提升其性能呢?传统DETR和RT-DETR对于小物体的定位和识别常常不尽如人意,这主要是因为小物体的特征较为模糊,且相较于大物体占据图像的像素较少,容易被忽略。:改进RT-DETR的锚框设计,使用更加动态和灵活的锚框机制,使得模型能够适应不同尺度的目标,尤其是小物体的检测。
2025-06-10 10:46:52
304
原创 目标检测中F1-Score指标的详细解析:深度理解,避免误区
举个例子,在无人驾驶的障碍物检测中,模型的精度(Precision)高可能意味着它能准确地识别前方的障碍物,但如果召回率(Recall)低,意味着它漏掉了许多潜在的障碍物,从而影响到整体的安全性。这种情况显然不可接受。在目标检测的世界里,F1-Score 是一个常被提及的重要评估指标,然而,很多人却对它的具体含义和应用场景了解不深,导致在模型评价时出现误用甚至误判。例如,在某些不平衡数据集上,模型可能会偏向于高召回率而忽略精度,导致不准确的预测,F1-Score则能够在这两者之间找到一个合适的平衡点。
2025-06-10 10:41:11
216
原创 基于深度学习RT-DETR算法的盲人障碍物目标检测:提升盲人出行安全的智能化突破
盲人出行问题一直是社会关注的焦点,尤其是在复杂的城市环境中,盲人面临着无数的障碍物,如路障、行人、车辆等,这些障碍物对他们的出行安全造成了极大的挑战。RT-DETR(Real-Time DEtection Transformer)是一种基于深度学习的目标检测算法,结合了Transformer的高效特性与卷积神经网络(CNN)的强大视觉处理能力,能够实时高效地识别图像中的多个目标。该数据集不仅包含了不同类型的障碍物(如行人、车辆、障碍物等),还包括了不同环境条件下的图像数据(如白天、夜晚、雨天等)。
2025-06-10 10:14:45
569
原创 盲人障碍物YOLOv11训练结果分析
在目标检测任务中,mAP被用作衡量检测模型在不同条件下表现的标准,具体计算方式是通过在不同的IoU(Intersection over Union)阈值下,绘制精度与召回率的曲线图,计算其下方的面积。:表示在IoU阈值从0.5到0.95(步长为0.05)范围内,计算得到的平均mAP值。:指在IoU阈值大于0.5时计算得到的平均mAP,侧重于评估在较低阈值下模型的目标检测能力。:表示正确识别为正类的样本占所有被判定为正类样本的比例。:表示实际为正类的样本中,模型能够正确识别出来的比例。
2025-06-09 23:21:43
92
原创 DL00871-基于深度学习YOLOv11的盲人障碍物目标检测含完整数据集
YOLOv11作为YOLO系列的最新版本,通过其强大的目标检测能力,能够在实时环境中准确、高效地识别和定位障碍物,特别适用于盲人导航系统。尤其是在复杂的城市环境中,盲人面临的障碍物检测问题更加严峻。该数据集包含了各种盲人行走场景中的障碍物图像,包括不同类型的障碍物(如人、车、路障等),以及不同环境条件下的图像(如白天、夜晚、阴雨天等),确保模型在复杂环境下仍能保持高效的检测能力。基于YOLOv11的盲人障碍物检测技术,能够广泛应用于各种盲人辅助出行系统,提升盲人出行的安全性和便捷性。
2025-06-09 23:17:36
677
原创 基于RT-DETR算法的夜间交通车辆与行人目标检测
RT-DETR是深度学习领域中最新的一项突破,它结合了Transformer模型和卷积神经网络(CNN),能够高效、精确地进行目标检测,尤其在低光照条件下表现尤为突出。随着智能交通系统(ITS)的发展,实时、高效的交通监控成为了城市安全管理的重要一环。尤其是在夜间,低光照、复杂天气条件等因素使得传统的目标检测算法面临巨大的挑战,如何在夜间环境中准确地识别车辆和行人,成为智能交通系统中亟待解决的痛点。数据集包含了大量在夜间复杂光照和天气条件下拍摄的交通图像,并对每一张图像中的车辆、行人等目标进行了详细标注。
2025-06-08 11:06:16
404
原创 基于分布式深度学习的移动边缘计算网络卸载
然而,随着设备数量的增加和计算需求的不断提升,如何高效地利用边缘计算资源,实现智能设备的计算任务卸载,成为了亟待解决的难题。通过将深度学习引入到卸载决策中,能够根据任务的特性、网络状况以及边缘计算资源的实时状态,智能化地调整任务的卸载策略,从而大幅提升计算效率、减少延迟,充分利用边缘计算资源。传统的移动边缘计算网络中,设备通常根据预设的规则将任务卸载到边缘服务器上,但这种方法的局限性在于它不能根据实际情况灵活地做出卸载决策。基于分布式深度学习的移动边缘计算卸载技术,具有广泛的应用前景。
2025-06-08 09:30:00
654
原创 基于深度学习的金枪鱼各类别目标检测含完整数据集
在渔业行业,金枪鱼的捕捞和管理一直是一个巨大的挑战,尤其是在大规模渔业作业中,如何精确地识别并分类不同种类的金枪鱼,是提高捕捞效率和保护生态环境的关键。然而,传统的金枪鱼识别方法依赖人工判断,费时费力,且存在很大的误差和漏检问题。金枪鱼的种类繁多,外形相似,甚至在不同的光照、角度下,金枪鱼的外观变化较大,这使得传统方法在准确性和实时性方面存在很大挑战。金枪鱼目标检测的数据集包含了大量的金枪鱼图像,并对图像中的每一只金枪鱼进行了精确的标注,包括金枪鱼的种类、位置和边界框等信息。
2025-06-07 16:55:49
1016
原创 DL00335-基于深度学习YOLOv11的煤矸石检测含完整数据集
而最新版本的YOLOv11,更是对模型进行了进一步优化,提升了检测速度与准确性,成为煤矸石检测的“救星”。在煤矿开采的过程中,煤矸石的处理一直是一个长期困扰矿业企业的问题。煤矸石不仅占据了大量资源,而且还可能对环境造成污染,因此高效精准地检测煤矸石并加以处理,是煤矿安全生产和环境保护中的一项重要任务。煤矸石检测的数据集通常包括不同光照、角度和距离下的煤矸石图像,同时还需标注出煤矸石的具体位置和类别。通过精准高效的煤矸石检测,煤矿企业能够及时清除煤矸石,减少其对环境的污染,同时提高矿山的资源利用率。
2025-06-07 13:04:01
1425
原创 基于深度学习的无人机轨迹预测
随着无人机技术的不断发展,无人机在农业、物流、监控等领域的应用日益广泛。精准的轨迹预测不仅能够提高无人机飞行的效率和安全性,还能在应对复杂环境下的突发状况时做出迅速反应。因此,基于深度学习的无人机轨迹预测已成为当前研究和应用的热门方向。
2025-06-06 15:52:38
1522
1
原创 X00319-基于XGBoost的电网用户窃电检测含数据集
XGBoost是一种基于梯度提升树(GBDT)思想的高效算法,它通过逐步添加决策树来减小模型的预测误差,尤其在处理大规模数据集时表现出色。XGBoost具有高并行性、良好的正则化能力和强大的抗过拟合能力,能够有效处理电网用户窃电检测中的数据不平衡、复杂的非线性关系等问题。电网用户窃电检测通常依赖于电力用户的用电数据集。该数据集包含了用户的基本信息(如用户ID、用电区域等)和用电行为数据(如日用电量、月用电量、时段用电量等)。此外,还会根据历史数据标注出哪些用户存在窃电行为,以供模型进行训练。用电量数据。
2025-06-04 11:11:53
857
原创 电力高空作业安全检测(6)RT-DETR训练结果分析-混淆矩阵
目标检测不仅要判断图像中是否存在目标,还要准确预测目标的位置,因此混淆矩阵在目标检测中的应用相比于传统分类任务更为复杂。具体来说,混淆矩阵不仅反映了模型在正确检测目标方面的能力,还可以揭示模型在误检(假正例)和漏检(假负例)方面的缺陷。通过对混淆矩阵中的各项数据进行分析,我们可以深入理解模型的错误类型,针对性地调整模型,提升其在实际应用中的表现。虽然在目标检测任务中,真负例的关注度通常不如真正例、假正例和假负例高,但它依然是模型评估的一部分,表明模型对没有目标的区域做出了正确的判断。
2025-06-03 17:30:21
213
原创 电力高空作业安全检测(5)RT-DETR训练结果分析-召回率Recall
当置信度阈值较低时,模型会判断出更多的预测结果,尽管许多低置信度的预测结果可能是误判。此时,召回率较高,因为更多的正样本被检测出,但这也可能带来较多的假正例(False Positive)。随着置信度阈值的增大,模型只会保留那些置信度较高的预测,虽然召回率会有所下降,但模型的误判率(即假正例)也会减少。然而,随着置信度阈值的调整,召回率和精确率之间的平衡会发生变化。高召回率意味着较少的正样本被漏检,模型的“召回能力”较强。相反,提高置信度阈值则会减少误判,但可能导致一些真实的正样本被漏检,从而降低召回率。
2025-06-02 21:59:41
327
原创 电力高空作业安全检测(4)RT-DETR训练结果分析-精度Precision
随着阈值的增大,模型会变得更加保守,只保留那些具有较高置信度的预测结果,因此每个类别的检测准确率通常会提高。通过绘制置信度阈值与准确率之间的关系曲线,我们可以直观地看到在不同阈值下,模型的表现如何变化。该曲线的关键在于平衡精确率和召回率,帮助研究人员和工程师在实际应用中根据需求选择合适的阈值,以达到最佳的性能。具体来说,低置信度的真实样本,虽然其判定概率低于设定的阈值,但实际上可能仍然是目标类别的真实实例。这就意味着,在提高准确率的同时,可能会牺牲一部分召回率,因为低置信度的真实样本未能被正确识别。
2025-06-02 21:56:24
234
原创 电力高空作业安全检测(3)RT-DETR模型
RT-DETR-R101 模型则达到了 54.3% 的 AP 和 74 FPS 的推理速度,超越了当时最先进的 YOLOv8 模型,兼顾了速度与精度。通过结合 Transformer 的优势和针对实时性需求的优化设计,RT-DETR 为实现高效、精确的电力高空作业安全目标检测提供了新的思路和解决方案。尽管基于 Transformer 的 DETR 模型在去除 NMS 的同时,提供了更简洁的端到端检测框架,但其高计算成本限制了其在实时检测中的应用。RT-DETR防监控等领域。
2025-05-31 10:45:00
380
原创 电力高空作业安全检测(2)数据集构建
进行安全监测需要大量的图像数据,这些数据需要准确标注不同的安全设备与作业人员行为。为了进行电力高空作业的安全检测,本研究构建了一个专门的数据集,包含了大量来自不同电力高空作业现场的图像。这些图像不仅真实反映了作业现场的具体情况,还包含了不同角度、不同光照下的作业场景,具备了广泛的适用性。的实际图片,确保场景的多样性与代表性。数据的采集覆盖了不同的作业任务,如设备安装、线路检修、维护等,确保了数据集的全面性与多样性。,以识别作业人员的安全装备情况及作业环境,从而实现对电力高空作业安全状态的自动监测和预警。
2025-05-31 09:15:00
790
原创 电力高空作业安全检测(1)研究背景
然而,电力高空作业作为电力生产中不可或缺的一部分,涉及的作业环境复杂且危险,安全问题时常成为电力工程中的重大挑战。随着电力设施的日益复杂化和高空作业任务的增加,如何确保作业人员的安全,减少安全事故的发生,已经成为行业中的迫切需求。本研究旨在通过引入创新的检测技术,提升电力高空作业的安全保障能力,建立完善的安全管理体系,减少事故发生的频率,最终实现电力高空作业的。等现代技术手段,能够实时监控作业现场的安全状况,提升检测效率与准确性,避免因安全隐患造成的重大事故。的研究与应用应运而生。
2025-05-30 09:45:00
264
原创 《计算机仿真》——引领计算机仿真领域的学术前沿
计算机仿真》是由中国航天科工集团公司第十七研究所主办的月刊,致力于计算机仿真及其应用领域的研究与探索。作为国内知名的科技期刊之一,它广泛报道了计算机仿真技术在工程、科学、信息技术等领域的最新研究成果及应用实践。
2025-05-30 09:30:00
189
原创 DL00310-基于深度学习SegFormer的滑坡图像分割代码含数据集
SegFormer不仅为地质学研究人员提供了强大的工具支持,也为智能监测系统的建立和应用提供了新的思路。让我们一起携手,通过深度学习技术,推动滑坡监测和预警系统的智能化发展,迈向更高的科研水平!,减少繁琐的人工操作,提高整体科研效率。无论是大规模数据集的处理,还是复杂地形下的滑坡分析,SegFormer 都能迅速给出精准结果,确保你在科研进程中处于领先地位。模型,融合了 Transformer 的优越性,提供了前所未有的。,提升模型的识别能力与精度,帮助你在研究中获得更加可靠的数据支持。
2025-05-29 17:32:15
374
原创 DL00924-基于深度学习YOLOv11的工程车辆目标检测含数据集
的车辆图像,还提供了标注信息,帮助你在模型训练中获得更高的精度与鲁棒性。让数据成为你的研究利器,助你在工程智能领域的探索中不断迈向新高!中,YOLOv11的深度学习算法能够快速准确地完成目标检测,确保每一辆车辆都被高效识别和标记。,都能以最快的速度和最高的精度完成,节省大量时间,让你将更多精力放在研究的创新和突破上!,旨在帮助你提升工程车辆的识别精度和处理效率,完美适应复杂的工程环境。让我们一起探索更多未知的科研领域,推动技术进步,迈向智能化的新未来!今天,我们为你带来了一款基于深度学习的。
2025-05-29 17:30:29
341
原创 《计算机测量与控制》强烈推荐
🔹 期刊级别:已被JST日本科学技术振兴机构数据库收录(2024),并且是北京大学《中文核心期刊要目总览》中的重要期刊,学术影响力巨大!🔹 主办单位:中国计算机自动测量与控制技术协会精心策划,专注于计算机自动化技术与精密测量控制,内容专业而深入!如果你对计算机测量与控制领域的最新发展和技术趋势感兴趣,那就不容错过这本权威期刊——《计算机测量与控制》!无论你是从事测量技术、自动化控制领域的科研人员,还是刚入门的研究生,这本期刊将成为你科研探索的得力助手!📌 国内刊号:CN 11-4762/TP。
2025-05-28 22:09:40
184
原创 DL00916-基于深度学习的金枪鱼各类别目标检测含完整数据集
其中涵盖了金枪鱼的多个品种和不同的环境场景。无论是在学术研究,还是行业应用中,数据集的全面性和高质量将为你的研究工作提供强有力的支持。中,系统能够自动标记出不同类别的金枪鱼,保证识别过程中的高准确性,极大提高了科研数据的处理速度和精度。在繁重的科研任务中,系统的自动化处理可以节省大量时间,让科研人员可以集中精力在更加关键的研究问题上,提升科研效率。基于深度学习的金枪鱼目标检测技术,不仅能够识别不同种类的金枪鱼,还能高效地区分其细微特征。随着深度学习模型在目标检测中的应用不断深化,基于该系统的。
2025-05-28 20:51:24
824
原创 推荐神刊~《计算机与数字工程》
领域的学者与学生,必备的参考资料!无论是选题方向还是研究数据,都能为你的科研提供充足的支持和灵感!的期刊来丰富你的研究内容吗?那你绝对不能错过《计算机与数字工程》!精心打造,凭借雄厚的科研背景,保证期刊内容的。等主流平台收录,确保学术价值和广泛传播!让我们一起紧跟科技潮流,迈向成功!:每月更新,持续为你带来。,让你走在科技最前沿!
2025-05-27 11:20:33
346
原创 DL00914-基于RT-DETR算法的安检X光刀具检测含数据集
传统的安检手段往往效率低下且容易出现误检和漏检,特别是在处理X光图像时,人工检测容易出现疲劳和失误。现在,基于,为你带来和,让安检变得更智能、更可靠。
2025-05-27 09:30:00
816
原创 YOLOv11助力地铁机场安检!!!一键识别刀具
在传统的安检过程中,X光图像分析通常依赖人工判断,不仅工作负担大,而且准确性和效率受限,特别是面对复杂多变的违禁物品形态时,容易出现漏检、误检的情况。基于此,**“基于人工智能的安检X光危险品刀具检测”**这一研究应运而生,旨在利用YOLOv11等深度学习技术,结合高质量的X光图像数据,开发出一个自动化的安检系统。在这一背景下,人工智能(AI)技术,尤其是深度学习和计算机视觉技术,作为当前最前沿的技术之一,为安检领域带来了巨大的变革机会。,特别是在X光图像的自动化分析方面,具有极大的潜力和优势。
2025-05-26 16:27:42
359
原创 DL00347-基于人工智能YOLOv11的安检X光危险品刀具检测含数据集
🚨💡在安全领域,效率与精准度的要求从未如此迫切。作为科研人员,是否一直在寻找一款可以提升安检准确率、减少人工干预、提升检测速度的智能工具?今天,我们为你带来了基于技术的,让安检工作从此不再依赖人工反复确认,全面提升系统智能化水平!🚀。
2025-05-26 16:12:27
449
原创 M00282-P2并联混合动力电动汽车的电池充电持续能源管理系统
我们设计的控制器通过初始化最优的等效因子,并根据当前电池状态(SoC)与目标值之间的接近度动态调整,确保在系统远离目标时能快速收敛,而当接近目标时又能保持稳定性。无论是平稳的速度变化,还是不同坡度的上坡与下坡情境,我们的控制器都能精准适应,保障每一个驾驶周期中的能源利用最大化。那你绝对不能错过我们为你精心设计的控制器实现方案!更妙的是,我们通过调整控制器参数,使得电池充电状态接近上限时,系统自动减少等效因子的数值,充分利用回收能量,在不突破电池限制的前提下,完美结合驾驶周期,帮助电动汽车更高效地运行!
2025-05-24 14:54:29
445
原创 DL00912-基于自监督深度聚类的高光谱目标检测含数据集
这款系统通过最先进的自监督学习技术,结合深度聚类算法,不仅大大提升了高光谱图像目标检测的准确性和效率,更能有效减少对人工标注数据的依赖。此外,我们为您精心准备了丰富的高光谱数据集,涵盖多个领域和应用场景,确保您在实验和研究中能够获得丰富、可靠的数据支持。选择这款基于自监督深度聚类的高光谱目标检测系统,您将获得更高效的研究工具、更精准的检测结果以及更广泛的应用支持,助力您在科研工作中取得突破性进展。在科研的道路上,数据的获取与分析无疑是成功的关键。立即加入,让科研工作变得更智能、更高效!
2025-05-23 15:37:37
327
原创 DL00971-用于高光谱图像分类的双选择融合Transformer网络含数据集
这款模型结合了先进的Transformer架构和双选择融合机制,能够有效处理高光谱图像中的复杂数据,极大提升分类精度。传统的图像分类方法往往难以充分挖掘高光谱数据的潜力,而我们的双选择融合方法,通过同时利用空间信息和光谱信息,精准地捕捉图像特征,提高了分类结果的可靠性和稳定性。无论你是从事遥感监测、环境研究,还是农业监控,这套数据集和模型都能为你的研究提供强大的支持。在高光谱图像分类领域,如何实现高精度、高效率的分类一直是科研人员面临的挑战。,正是为了解决这一问题,特别适用于高光谱图像的分类任务。
2025-05-23 10:15:00
215
原创 DL00786-基于RTDETR的水稻病害检测含完整数据集
该系统采用了RT-DETR模型,能够在复杂的环境中高效识别水稻病害,并且具备极高的鲁棒性,无论是光照变化、角度不同,还是病斑与背景的复杂情况,都能稳定输出准确的检测结果。为了解决这一问题,我们推出了基于RT-DETR的水稻病害检测系统,结合了最新的深度学习算法,能够精准、快速地识别水稻病害。包含多种水稻病害图像,数据集经过精心标注,涵盖了常见的水稻病害类型,适用于模型训练与测试。选择基于RT-DETR的水稻病害检测系统,提升您的研究效率,突破传统检测瓶颈,为农业科研贡献更高效、更智能的解决方案!
2025-05-22 16:28:55
534
原创 DL00967-通过伪样本合成进行零样本侧扫声纳图像分类含完整数据集
通过创新的伪样本合成技术,我们能够在缺乏标注数据的情况下,生成具有高代表性的伪样本数据,极大地丰富了训练集。尤其是在侧扫声纳图像分类中,获取充足的标注数据往往非常困难,影响了研究的进展与结果的准确性。为进一步提升使用体验,我们还提供了完整的数据集,涵盖多种场景与应用,为您的研究提供坚实的基础。无论您是进行环境监测、海洋探测还是其他相关领域的研究,我们的解决方案都能为您提供强有力的支持。无需担心数据瓶颈,从现在开始,利用我们的伪样本合成技术,让零样本图像分类不再是难题。
2025-05-22 15:36:14
187
原创 DL00988-稀疏增强数据transformer船舶AIS轨迹预测含完整数据集
作为研究生和科研人员,是否在进行船舶轨迹预测时遇到数据稀疏、轨迹复杂等问题?现在,我们为你提供一款基于。的船舶AIS轨迹预测工具,帮助你突破科研中的技术难题!,让你的科研工作更高效、更精准!
2025-05-21 21:02:56
388
原创 DL00987-基于深度学习YOLOv11的红外鸟类目标检测含完整数据集
针对科研人员,尤其是研究生们,是否在鸟类目标检测中遇到过数据不够精准、处理困难等问题?现在,我们为你提供一款基于深度学习YOLOv11的。,让你的科研工作更高效、更精准!,帮助你轻松解决这些难题!
2025-05-21 20:49:05
552
原创 DL00981-基于深度学习传感器无人机轨迹异常识别含代码数据集
作为研究生或科研人员,是否在无人机轨迹分析时遇到过如何高效识别异常的问题?,助力你的科研工作,提升数据分析效率!,正是你所需要的解决方案!立即获取这款基于深度学习的。
2025-05-20 23:22:49
195
原创 DL00954-无监督学习的玻璃瓶缺陷检测代码数据集
如果你正在进行缺陷检测、图像处理或质量控制相关研究,那么这套无监督学习的玻璃瓶缺陷检测代码与数据集,将为你的科研工作提供强大的技术支持。无需人工标签,自动学习:通过无监督学习方法,模型能够自动从大量未标注的数据中提取特征,识别并分类玻璃瓶上的各种缺陷,如裂纹、气泡、划痕等。多场景应用:无论是在实验室研究,还是在实际工业生产线上的缺陷检测任务,基于无监督学习的模型都能提供卓越的性能。这款基于无监督学习的玻璃瓶缺陷检测代码与数据集,将为你提供一个高效的工具,助力你的科研项目和实际应用。
2025-05-20 10:30:00
708
原创 DL00956-基于DeeplabV3+的手机屏幕缺陷检测油渍斑点裂缝代码数据集
在图像处理和质量控制领域,手机屏幕上的各种缺陷(如油渍、斑点、裂缝等)一直是科研工作中的重要研究方向。为了帮助科研人员高效解决这一问题,我们推出了。这套工具将大大提升你的研究效率,助力精准检测。
2025-05-20 10:30:00
470
原创 DL00923-基于RT-DETR的河道垃圾检测含完整代码数据集
随着环保问题的日益严峻,河道垃圾污染成为了亟待解决的重要问题。传统的人工检测方式不仅费时费力,而且难以实现实时、高效的垃圾监控。为了应对这一挑战,我们推出了,并提供完整的,助力开发者与环保工作者快速构建智能化的垃圾检测系统,提升河道治理效率。
2025-05-19 09:45:00
403
原创 基于深度学习的手机屏幕缺陷分割模型
在科研过程中,图像处理和数据分析是至关重要的部分,而随着深度学习的飞速发展,越来越多的研究领域开始依赖这一技术来提高效率和精度。如果你在进行图像处理、缺陷检测或与手机屏幕质量相关的研究工作,那么,将是你工作中的得力助手。
2025-05-19 09:15:00
285
原创 到底什么是消融实验?一文给你彻底讲明白
消融实验是一种非常有效的工具,帮助研究人员深入了解模型或系统各个组件的贡献及其重要性。通过系统地消除某些部分,可以为模型设计和优化提供清晰的指导,确保最终得到高效、精确的模型。
2025-05-18 13:49:39
993
在 TensorFlow 中进行多 GPU 训练,可以通过 tf.distribute.Strategy 来实现 TensorFlow 提供了多个策略来支持分布式训练,其中 MirroredStrat
2025-05-10
在 PyTorch 中进行多 GPU 训练,可以利用 torch.nn.DataParallel 或者 torch.nn.parallel.DistributedDataParallel 来实现
2025-05-10
为了实现 CoppeliaSim(以前称为 V-REP)机械臂联调,首先,你需要确保你已经安装了 CoppeliaSim 和它的 Python API 你可以从 CoppeliaSim 官网下载并安装
2025-05-10
要进行无人机轨迹预测,我们可以利用历史位置数据来预测无人机未来的位置 假设你有一个包含无人机历史飞行数据的CSV文件,这些数据包含时间戳、经度、纬度、速度、航向等信息 我们将使用机器学习方法来进行轨迹
2025-05-09
一个用于船舶AIS(自动识别系统)数据预测的Python脚本需要一定的背景知识,包括数据处理、机器学习模型的训练和预测过程 AIS数据通常包括船舶的定位、速度、航向等信息
2025-05-09
其中`YOLO()`中可以为预训练权重`pt`的路径或模型`yaml`文件的路径 `data`为数据配置文件地址 `use-ray`是一个专为提高效率和灵活性而设计的超参数调优库,它支持各种搜索策略、
2025-05-09
CoppeliaSim 4.5.1的Edu版本 windows 10安装包,可进行机械臂 模拟
2025-05-09
DGL pip whl文件 dgl-1.1.1-cp38-cp38-win-amd64.whl
2023-07-02
YOLOv8预训练权重文件集合(YOLOv8n,YOLOv8s,YOLOv8m,YOLOv8l,YOLOv8x)
2023-06-23
常见的tensorflow-gpu2.x缺失dll(cublas64-11.dll&cublasLt64-11.dll等)
2023-06-09
MIFS算法MATLAB实现
2023-06-08
OpenMP: Monte Carlo Simulation Code
2023-06-08
CUDA: Monte Carlo simulation
2023-06-08
气象研究必备pip库:netCDF4-1.5.8-cp37-cp37m-win-amd64
2023-06-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人