一、曲线线段修复
在GIS中,曲线一般有两种表示方式:一类是由多个直线段(多段线)组成的曲线,另一类是由贝塞尔曲线、圆弧和椭圆弧等数学曲线表示的曲线。
-
多段线(LineString): 这种曲线是由一系列相邻的直线段连接而成。在GIS中,多段线通常用于近似曲线或折线特征,如道路、河流等。多段线是由一系列节点(顶点)连接而成,可以通过这些节点来近似实际的曲线。
-
贝塞尔曲线、圆弧和椭圆弧: 这些曲线是由数学公式生成的光滑曲线,其路径由控制点、半径等参数决定。在GIS中,这些曲线通常用于绘制更为光滑和精确的曲线,如图形设计、CAD制图、地图标注等。它们可以更准确地模拟自然曲线,提供更高的图形质量。
在GIS中,多段线和贝塞尔曲线、圆弧、椭圆弧等曲线都有各自的应用场景和优势。
1.1 多段线(LineString)的应用
-
折线地物表示: 多段线通常用于近似表示折线状的地物,如河流、道路等。由一系列直线段组成,适用于模拟具有直线特征的地物。
-
轨迹记录: 在移动物体轨迹的记录中,多段线可以用于表示物体在不同时间点之间的运动路径。
-
地图标注: 多段线可以用于绘制地图上的标注线,例如连接地图元素之间的注释线。
1.2 贝塞尔曲线、圆弧和椭圆弧的应用
-
曲线地物表示: 贝塞尔曲线、圆弧和椭圆弧等数学曲线可以用于更准确地表示自然界中的光滑曲线地物,如环岛、山脊的轮廓等。
-
图形设计: 在GIS中,用于图形设计的曲线类型可以提供更高的图形质量,用于绘制符号、标签等,使地图更具艺术性。
-
CAD绘图: 在CAD(计算机辅助设计)软件中,贝塞尔曲线、圆弧和椭圆弧常用于精确绘制建筑、工程图纸等。
1.3 将曲线增密为多段线的原因
-
数据存储和传输: 曲线的数学表示可能需要更多的数据存储和传输资源,因为曲线的定义通常需要更多的参数以准确描述其形状。这可能包括曲线的方程、曲线上的控制点等。与之相比,直线或多段线的数学表示可能更简单,只需存储端点坐标即可。
-
分析和处理效率: 曲线的分析和处理可能相对复杂,而多段线的分析通常更为高效。在某些GIS分析任务中,将曲线增密为多段线可能更容易实现和处理。
-
符号化和显示: 在某些情况下,曲线的图形表示可能无法很好地适应显示设备或符号化需求。增密为多段线可以更好地适应不同的显示要求。
二、如何将曲线线段(贝塞尔、圆弧和椭圆弧)替换为线段?
2.1 使用ArcGIS解决
使用ArcGIS提供的地理处理工具“增密”,通过指定“增密方法”为“偏移”,实现对曲线线段替换为线段。工具直接修改源要素图层,没有其他输出。