目录
前言
经过了好一段时间学习,数据结构的部分学到了二叉树难度也是一天天的攀升。<( ̄ ﹌  ̄)>
总之呢写个博客总结一下对于二叉树的浅显理解
一、树
1.1树的结构
如图所示树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
警告:树形结构的子节点之间不能相互连接
1.2树的相关概念
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
二、二叉树的相关概念
2.1概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
3. 二叉树不存在度大于2的结点
4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
2.2特殊二叉树
2.2.1满二叉树
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
2.2.2完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.3 二叉树的基本性质
1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为n2 ,则有 n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log(n+1). (ps: 是log以2 为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:
(1). 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
(2). 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
(3). 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
2. 4二叉树的存储结构
一般以链式结构(链表)和顺序结构(数组)为主
三、堆的实现
3.1头文件以及主要接口声明
#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<assert.h>
#include<time.h>
typedef int HPDataType;
typedef struct Heap
{
HPDataType* _a;
int _size;
int _capacity;
}Heap;
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void shiftup(HPDataType* a, int n, int child);
void shiftdown(HPDataType* a, int n, int root);
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);
// TopK问题:找出N个数里面最大/最小的前K个问题。
// 比如:未央区排名前10的泡馍,西安交通大学王者荣耀排名前10的韩信,全国排名前10的李白。等等问题都是Topk问题,
// 需要注意:
// 找最大的前K个,建立K个数的小堆
// 找最小的前K个,建立K个数的大堆
void PrintTopK(int* a, int n, int k);
void TestTopk();
3.2堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n) {
assert(a);
assert(hp);
int i;
hp->_a = (HPDataType*)malloc(sizeof(HPDataType) * n);
for (i = 0; i < n; i++) {
hp->_a = a[i];
}
for (i = (n - 2) / 2; i >= 0; i--) {
shiftdown(hp->_a, n, i);
}
hp->_size = hp->_capacity = n;
}
3.3堆的销毁
void HeapDestory(Heap* hp) {
if (hp->_a) {
free(hp->_a);
hp->_a = NULL;
hp->_capacity = hp->_size = 0;
}
}
3.4 堆的插入
void HeapPush(Heap* hp, HPDataType x) {
if (hp->_size == hp->_capacity) {
int new = hp->_capacity == 0 ? 10 : 2 * hp->_capacity;
hp->_a = (HPDataType*)realloc(hp->_a, new * sizeof(HPDataType));
hp->_capacity = new;
}
hp->_a[hp->_size] = x;
++hp->_size;
shiftup(hp->_a, hp->_size, hp->_size - 1);
}
3.4.1 堆的向上调整
void shiftup(HPDataType* a, int n, int child) {
int parent = (child - 1) / 2;
while (parent>=0)
{
if (a[parent] > a[child]) {
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else {
break;
}
}
}
3.4.2堆向下调整
void shiftdown(HPDataType* a, int n, int root) {
assert(a);
int parent = root;
int child = 2 * parent + 1;
while (child < n) {
if (child + 1 < n && a[child + 1] > a[child]) {
++child;
}if (a[child] > a[parent]) {
Swap(&a[child] , &a[parent]);
parent = child;
child = 2 * parent + 1;
}
else {
break;
}
}
}
3.5堆的删除
void HeapPop(Heap* hp) {
if (HeapEmpty(hp) == 0) {
Swap(&hp->_a[0], &hp->_a[hp->_size - 1]);
--hp->_size;
shiftdown(hp->_a, hp->_size, 0);
}
}
3.6堆顶数据提取
HPDataType HeapTop(Heap* hp) {
assert(hp->_size);
return hp->_a[0];
}
3.7 堆数据的个数
int HeapSize(Heap* hp)
{
return hp->_size;
}
3.8堆的判空
int HeapEmpty(Heap* hp) {
return hp->_size == 0;
}
后记
二叉树和堆都是数据结构的重点,结果因为现实中的原因作业拖了好久,谨记这个状态极其糟糕的作业