数据结构-二叉树

目录

前言

一、树

1.1树的结构

1.2树的相关概念

二、二叉树的相关概念

2.1概念

2.2特殊二叉树

2.2.1满二叉树

2.2.2完全二叉树

2.3 二叉树的基本性质

2. 4二叉树的存储结构

三、堆的实现

3.1头文件以及主要接口声明

3.2堆的构建

3.3堆的销毁

3.4 堆的插入

3.4.1 堆的向上调整

3.4.2堆向下调整 

 3.5堆的删除

3.6堆顶数据提取 

3.7 堆数据的个数

3.8堆的判空 

后记 


前言

经过了好一段时间学习,数据结构的部分学到了二叉树难度也是一天天的攀升。<( ̄ ﹌  ̄)> 

总之呢写个博客总结一下对于二叉树的浅显理解

一、树

1.1树的结构

如图所示树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。

警告:树形结构的子节点之间不能相互连接

1.2树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
 

二、二叉树的相关概念

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

3. 二叉树不存在度大于2的结点

4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

2.2特殊二叉树

2.2.1满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。

2.2.2完全二叉树

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的基本性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为n2 ,则有 n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log(n+1). (ps: 是log以2 为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:
(1). 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
(2). 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
(3). 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子


2. 4二叉树的存储结构

一般以链式结构(链表)和顺序结构(数组)为主

三、堆的实现

3.1头文件以及主要接口声明

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<assert.h>
#include<time.h>
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* _a;
	int _size;
	int _capacity;
}Heap;

// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void shiftup(HPDataType* a, int n, int child);
void shiftdown(HPDataType* a, int n, int root);
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

// TopK问题:找出N个数里面最大/最小的前K个问题。
// 比如:未央区排名前10的泡馍,西安交通大学王者荣耀排名前10的韩信,全国排名前10的李白。等等问题都是Topk问题,
// 需要注意:
// 找最大的前K个,建立K个数的小堆
// 找最小的前K个,建立K个数的大堆
void PrintTopK(int* a, int n, int k);
void TestTopk();

3.2堆的构建

void HeapCreate(Heap* hp, HPDataType* a, int n) {
	assert(a);
	assert(hp);
	int i;
	hp->_a = (HPDataType*)malloc(sizeof(HPDataType) * n);
	for (i = 0; i < n; i++) {
		hp->_a = a[i];
	}
	for (i = (n - 2) / 2; i >= 0; i--) {
		shiftdown(hp->_a, n, i);
	}
	hp->_size = hp->_capacity = n;
}

3.3堆的销毁

void HeapDestory(Heap* hp) {
	if (hp->_a) {
		free(hp->_a);
		hp->_a = NULL;
		hp->_capacity = hp->_size = 0;
	}
}

3.4 堆的插入

void HeapPush(Heap* hp, HPDataType x) {
	if (hp->_size == hp->_capacity) {
		int new = hp->_capacity == 0 ? 10 : 2 * hp->_capacity;
		hp->_a = (HPDataType*)realloc(hp->_a, new * sizeof(HPDataType));
		hp->_capacity = new;
	}
	hp->_a[hp->_size] = x;
	++hp->_size;
	shiftup(hp->_a, hp->_size, hp->_size - 1);
}

3.4.1 堆的向上调整

void shiftup(HPDataType* a, int n, int child) {
	int parent = (child - 1) / 2;
	while (parent>=0)
	{
		if (a[parent] > a[child]) {
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else {
			break;
		}

	}
}

3.4.2堆向下调整 

void shiftdown(HPDataType* a, int n, int root) {
	assert(a);
	int parent = root;
	int child = 2 * parent + 1;
	while (child < n) {
		if (child + 1 < n && a[child + 1] > a[child]) {
			++child;
		}if (a[child] > a[parent]) {
			Swap(&a[child] , &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else {
			break;
		}
	}
}

 3.5堆的删除

void HeapPop(Heap* hp) {
	if (HeapEmpty(hp) == 0) {
		Swap(&hp->_a[0], &hp->_a[hp->_size - 1]);
		--hp->_size;
		shiftdown(hp->_a, hp->_size, 0);
	}
}

3.6堆顶数据提取 

HPDataType HeapTop(Heap* hp) {
	assert(hp->_size);
	return hp->_a[0];
}

3.7 堆数据的个数

int HeapSize(Heap* hp)
{
	return hp->_size;
}

3.8堆的判空 

int HeapEmpty(Heap* hp) {
	return hp->_size == 0;
}

后记 

二叉树和堆都是数据结构的重点,结果因为现实中的原因作业拖了好久,谨记这个状态极其糟糕的作业

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值