ZOJ 3562 Alice's Sequence I

给出K个模方程,x = ai % mi,求出x在L,R区间内的解的个数,然后输出这些解,超过100个就只输出前100个解。

这题和POJ 2891很像,那题只要求出最小的正解,于是只需要在那题的基础上改下就行了。

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stack>
#include<queue>
#include<math.h>
#include<cstdio>

#define LL long long
using namespace std;
long long a[10010];
long long m[10010];
long long ans[1000];

long long ext_gcd(long long a,long long b,long long &x,long long &y)
{
	long long t,ret;
	if (!b)
	{
		x=1,y=0;
		return a;
	}
	ret=ext_gcd(b,a%b,x,y);
	t=x,x=y,y=t-a/b*y;
	return ret;
}

int main()
{
    int k;
    long long a1,r1,a2,r2,lcm;
    long long d,x,y,L,R;
    while(~scanf("%d",&k))
    {
        bool flag=false;
        for(int i=1;i<=k;i++)
			scanf("%lld",&a[i]);
		for(int i=1;i<=k;i++)
			scanf("%lld",&m[i]);
		scanf("%lld%lld",&L,&R);
        a1=a[1];
        r1=m[1];
		if(k==1 && r1>=a1) { puts("0");continue; }
        for(int i=2;i<=k;++i)
        {
            a2=a[i];
        	r2=m[i];
            if(flag)
                continue;
            d=ext_gcd(a1,a2,x,y);
            if((r2-r1)%d)
                flag=true;
            a2=a2/d;
            r1=((x*((r2-r1)/d)%a2+a2)%a2)*a1+r1;
            a1=a2*a1;
        }
        if(flag)
            printf("0\n");
        else
        {
			long long ans1=r1%a1;
			lcm=a1;
			if(ans1<L)
				ans1=(L-ans1)/lcm*lcm+ans1;
			if(ans1<L) ans1+=lcm;
			if(ans1>R) { puts("0");continue; }
			LL cnt=(R-ans1)/lcm+1;
			printf("%lld\n%lld",cnt,ans1);
			for(int i=2;i<=100 && i<=cnt;i++)
			{
				ans1+=lcm;
				printf(" %lld",ans1);
			}
			puts("");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值