容斥原理
给一个N和一个有M个元素的集合,求出比N 小且能被集合里的数整除的数的个数。
直接枚举集合的最小公倍数,出现奇数次就加,偶数次减去。
#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#define mm(a,b) memset(a,b,sizeof(a))
using namespace std;
const int inf=0x7ffffff;
const double PI=acos(-1.0);
const double eps=1e-8;
const double e=2.7182818284590452354;
int num[30];
int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int lcm(int a,int b)
{
if(a>b)
return a/gcd(a,b)*b;
else return b/gcd(a,b)*a;
}
int main()
{
int n,m,p;
while(~scanf("%d%d",&n,&m))
{
int cnt=0;
for(int i=0;i<m;i++)
{
scanf("%d",&p);
if(p>0 && p<n) num[cnt++]=p;
}
n--;
int ans=0;
for(int i=1;i<(1<<cnt);i++)
{
int sum=0;
int Lcm=1;
for(int j=0;j<cnt;j++)
{
if(i&(1<<j))
{
sum++;
Lcm=lcm(num[j],Lcm);
}
}
if(sum&1)
ans+=n/Lcm;
else ans-=n/Lcm;
}
printf("%d\n",ans);
}
return 0;
}