剑指offer--数据流中的中位数

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/kangaroo835127729/article/details/45134627

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

用两个堆,一个大顶堆,一个小顶堆。

先往小顶堆里面存数,并保持: 0 <= 小顶堆的size()-大顶堆的size() <= 1

保持两边数量几乎一致就需要在插入的时候进行比较、调整。

返回中位数的时候,如果小顶堆和大顶堆size()相同,就返回他们堆顶元素的平均值;否则返回小顶堆的堆顶元素。

这种方法插入时间复杂度是O(log n),返回中位数的时间复杂度是O(1)

 
import java.util.PriorityQueue;
import java.util.Comparator;
 
public class Solution {
    //大顶堆
    PriorityQueue<Integer> left = new PriorityQueue<Integer>(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
            // TODO Auto-generated method stub
            return o2-o1;
        }
    }
    );
    //小顶堆
    PriorityQueue<Integer> right = new PriorityQueue<Integer>();


    public void Insert(Integer num) {
        if(left.size() < right.size()){
            if(right.peek()<num){
                right.offer(num);
                left.offer(right.poll());
            }else{
                left.offer(num);
            }
        }else{
            left.offer(num);
            right.offer(left.poll());
        }
    }


    public Double GetMedian() {
        if(left.size() == right.size())
            return (double)(left.peek() + right.peek())/2;
        else
            return (double)(right.peek());
    }
}

使用自制堆:

import java.util.Arrays;
import java.util.Comparator;

public class Solution {
    //大顶堆
    Heap<Integer> left = new Heap<>(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o1.compareTo(o2);
        }
    });
    //小顶堆
    Heap<Integer> right = new Heap<Integer>(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o2.compareTo(o1);
        }
    });

    public void Insert(Integer num) {
        if(left.size() < right.size()){
            if(right.peek()<num){
                right.offer(num);
                left.offer(right.poll());
            }else{
                left.offer(num);
            }
        }else{
            left.offer(num);
            right.offer(left.poll());
        }
    }

    public Double GetMedian() {
        if(left.size() == right.size())
            return (double)(left.peek() + right.peek())/2;
        else
            return (double)(right.peek());
    }

    private final static class Node<E> {
        public E val;
        public Node(E val) {
            this.val = val;
        }

        @Override
        public String toString() {
            return val+"";
        }
    }

    public class Heap<E>{
        /**
         * 当前序号
         */
        private int curIndex = -1;
        //当前数组容量
        private int capcity = 10;
        //用于存放元素的数组
        private Node<E>[] arr = new Node[capcity];
        //扩容比例
        private int ratio = 2;
        //比较器,从而决定堆的形式
        private Comparator<E> comparator;

        public Heap(Comparator<E> comparator){
            this.comparator = comparator;
        }

        public void offer(E val) {
            Node<E> node = new Node<E>(val);
            if(++curIndex==capcity){
                arr = Arrays.copyOf(arr, capcity*2);
                capcity = arr.length;
            }
            arr[curIndex] = node;
            heapUp(curIndex);
        }

        /**
         * 子元素上升
         */
        private void heapUp(int index) {
            //如果是堆顶,则不上升
            while(index > 0){
                //父节点序号
                int parentIndex = (index-1)/2;
                //比较
                if(comparator.compare(arr[index].val,arr[parentIndex].val)>0){
                    swap(parentIndex,index);
                    index = parentIndex;
                }else{
                    break;
                }
            }
        }

        /**
         * 交换父子元素
         * @param parent
         * @param child
         */
        private void swap(int parent,int child) {
            Node<E> parentNode = arr[parent];
            arr[parent] = arr[child];
            arr[child] = parentNode;
        }

        public void delete(int index) {
            //将最后一个元素,赋值到被删除元素的位置
            arr[index] = arr[curIndex];
            //删除最后一个元素
            arr[curIndex] = null;
            curIndex--;
            heapDown(index);
        }

        public void delete(E val) {
            for(int i=0;i<=curIndex;i++){
                if(val==arr[i].val){
                    delete(i);
                    return;
                }
            }
        }

        /**
         * 子元素下降
         * @param index
         */
        private void heapDown(int index) {
            //如果超出curIndex,则已经沉到底了
            while(index<curIndex){
                //父节点,左右子节点中的最大值
                int maxIndex = index;
                //左子节点
                int leftChildIndex = index*2+1;
                //如果存在左子节点
                if(leftChildIndex<=curIndex){
                    maxIndex = comparator.compare(arr[leftChildIndex].val, arr[index].val)>0?leftChildIndex:index;
                }
                //右子节点
                int rightChildIndex = index*2+2;
                //如果存在右子节点
                if(rightChildIndex<=curIndex){
                    maxIndex = comparator.compare(arr[rightChildIndex].val, arr[maxIndex].val)>0?rightChildIndex:maxIndex;
                }
                //如果子节点比父节点大,那么将父节点下沉
                if(maxIndex!=index){
                    swap(maxIndex, index);
                    //继续下沉节点
                    index = maxIndex;
                }else{
                    return;
                }
            }
        }

        public E poll() {
            if(isEmpty()){
                return null;
            }
            E val = arr[0].val;
            delete(0);
            return val;
        }

        public E peek() {
            if(isEmpty()){
                return null;
            }
            return arr[0].val;
        }


        public boolean isEmpty() {
            return curIndex == -1;
        }

        public int size(){
            return curIndex+1;
        }

        @Override
        public String toString() {
            return Arrays.toString(arr);
        }
    }
}

展开阅读全文

没有更多推荐了,返回首页