CMU 11-785 L10 CNN architecture

Architecture

在这里插入图片描述

  • A convolutional neural network comprises “convolutional” and “downsampling ” layers
    • Convolutional layers comprise neurons that scan their input for patterns
    • Downsampling layers perform max operations on groups of outputs from the convolutional layers
      • Perform on individual map
      • For reduce the number of parameters
  • The two may occur in any sequence, but typically they alternate
  • Followed by an MLP with one or more layers

A convolutional layer

  • Each activation map has two components
    • An affine map, obtained by convolution over maps in the previous layer
      • Each affine map has, associated with it, a learnable filter
    • An activation that operates on the output of the convolution
  • What is a convolution
    • Scanning an image with a “filter”
    • Equivalent to scanning with an MLP
  • Weights
    • size of the filter × \times × no. of maps in previous layer
  • Size
    • Image size: N × N N\times N N×N
    • Filter: M × M M\times M M×M
    • Stride: S S S
    • Output size = ⌊ ( N − M ) / S ⌋ + 1 \lfloor(N-M) / S\rfloor+1 (NM)/S+1
  • Jargon
    • Filters are often called “Kernels
    • The outputs of individual filters are called “channels

Notion

  • Each convolution layer maintains the size of the image
    • With appropriate zero padding
    • If performed without zero padding it will decrease the size of the input
  • Each convolution layer may increase the number of maps from the previous layer
    • Depends on the number of filters
  • Each pooling layer with hop D D D decreases the size of the maps by a factor of D D D
  • Filters within a layer must all be the same size, but sizes may vary with layer
    • Similarly for pooling, D D D may vary with layer
  • In general the number of convolutional filters increases with layers
    • Because the patterns gets more complex, hence larger combinations of patterns to capture
  • Training is as in the case of the regular MLP
    • The only difference is in the structure of the network
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值