CMU 11-785 L23 Variational Autoencoders

本文深入探讨了PCA中的EM算法及其局限性,然后介绍了线性和非线性高斯模型,强调了在不完全信息情况下的处理方法。进一步地,文章详细阐述了变分自编码器(VAE)作为非线性高斯模型的扩展,以及其在捕获数据潜在结构中的作用,尽管VAE不能直接计算数据的概率。
摘要由CSDN通过智能技术生成

EM for PCA

With complete information

在这里插入图片描述

  • If we knew z z z for each x x x, estimating A A A and D D D would be simple

x = A z + E x=A z+E x=Az+E

P ( x ∣ z ) = N ( A z , D ) P(x \mid z)=N(A z, D) P(xz)=N(Az,D)

  • Given complete information ( x 1 , z 1 ) , ( x 2 , z 2 ) \left(x_{1}, z_{1}\right),\left(x_{2}, z_{2}\right) (x1,z1),(x2,z2)

argmax ⁡ A , D ∑ ( x , z ) log ⁡ P ( x , z ) = argmax ⁡ A , D ∑ ( x , z ) log ⁡ P ( x ∣ z ) \underset{A, D}{\operatorname{argmax}} \sum_{(x, z)} \log P(x, z)=\underset{A, D}{\operatorname{argmax}} \sum_{(x, z)} \log P(x \mid z) A,Dargmax(x,z)logP(x,z)=A,Dargmax(x,z)logP(xz)

= argmax ⁡ A , D ∑ ( x , Z ) log ⁡ 1 ( 2 π ) d ∣ D ∣ exp ⁡ ( − 0.5 ( x − A z ) T D − 1 ( x − A z ) ) =\underset{A, D}{\operatorname{argmax}} \sum_{(x, Z)} \log \frac{1}{\sqrt{(2 \pi)^{d}|D|}} \exp \left(-0.5(x-A z)^{T} D^{-1}(x-A z)\right) =A,Dargmax(x,Z)log(2π)dD 1exp(0.5(xAz)TD1(xAz))

  • We can get a close form solution: A = X Z + A = XZ^{+} A=XZ+
  • But we don’t have Z Z Z => missing

With incomplete information

  • Initialize the plane
  • Complete the data by computing the appropriate z z z for the plane
    • P ( z ∣ X ; A ) P(z|X;A) P(zX;A) is a delta, because E E E is orthogonal to A A A
  • Reestimate the plane using the z z z
  • Iterate

Linear Gaussian Model

  • PCA assumes the noise is always orthogonal to the data
    • Not always true
  • The noise added to the output of the encoder can lie in any direction (uncorrelated)
  • We want a generative model: to generate any point
    • Take a Gaussian step on the hyperplane
    • Add full-rank Gaussian uncorrelated noise that is independent of the position on the hyperplane
      • Uncorrelated: diagonal covariance matrix
      • Direction of noise is unconstrained

With complete information

x = A z + e x=A z+e x=Az+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值