- 博客(11)
- 收藏
- 关注
原创 超分辨中的损失函数
SSIM(结构相似性)除了考虑亮度信息之外还加入了对比度和结构分数;通过三个评价标准共同来衡量两幅图的差异。SSIM将图像分为多个像素块,并最终以三个分数的组合方式来表达,其中如何表达可以根据实际图像观感优先级来进行调整。本文参考https://zhuanlan.zhihu.com/p/541385224。其中MSE(均方误差)是直接考虑两幅图之间像素值的区别。而PSNR(峰值信噪比)其实是MSE的一种对数形式。主流损失为三种:MSE PSNR SSIM。
2022-11-21 23:58:44 1047
原创 c查表笔记
C struct 查表代码:struct Record { int dist; int dist_weight;};struct Node { struct Record data; struct Node* next;};上述为定义的结构体;其中该结构体的内存长度为12;Record data占8个字节; Node* next是链表节点指向下一个节点的指针,用来存放下一个节点的地址域。这是链表的一种固定结构。 其默认存储大小为2字节与short相同,但是结构体分配
2022-09-21 20:51:02 354
原创 非局部像素块贴片差值算法
Image interpolation via collaging its non-local patches非局部像素块贴吧算法
2022-09-09 15:10:27 390
原创 opencv图像存储内存
np不支持存储内存,需转字节流进行存储,因此需要将np转base64以及bytes进行存储图像np格式转base64:```pythondef image_to_base64(image_np): image = cv2.imencode('.jpg',image_np)[1].tostring() image_code = base64.b64encode(image) return image_code图像np格式转bytes: de
2022-01-14 15:44:52 1803
原创 GAN 生成图片形状的设置
GAN 中generated_images = g.predict(noise, verbose=0) 输出图片形状的设置def generator_model(): inputs = Input((10,)) fc1 = Dense(input_dim=10, units=128*7*7)(inputs) fc1 = BatchNormalization()(fc1) fc1 = LeakyReLU(0.2)(fc1) fc2 = Reshape((7, 7, 1
2020-07-30 11:42:27 655
原创 tensorflow object detection API实现的过程中报错整理
在学习 tensorflow object detection API的过程中出现了一些报错所以整理下来,希望可以对别人有帮助,第一次写东西,如果有问题希望指出谅解。1、csv文件转为tfrecord文件首先在路径object_detection下创建generate_tf.py下面的images这个参数是定位到你train或者test具体位置,比如改成images/test 这样最后就...
2019-07-26 20:46:03 916 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人