群、环和域

 

zz:http://blog.sina.com.cn/s/blog_3dc2673e01000bgm.html

群、环和域

(A1)加法的封闭性:如果说a和b属于S,则a+b属于S
(A2) 加法的结合律:对S中的任意元素a,b,c,a+(b+c)=(a+b)+c
(A3) 加法单位元:R中存在一个元素o,使得对于S中的任意元素a,有a+o=o+a=a
(A4) 加法逆元:对于S中的任意元素a,S中一定存在一个元素-a,使得a+(-a)=(-a) +a=0
[A1->A4]:群
(A5) 加法交换律:对于S中的任意元素a和b,有a+b=b+a
[A1->A5]:可交换群
(M1) 乘法的封闭性:如果a和b属于S,则ab属于S
(M2) 乘法的结合率:对于S中的任意元素a,b,c,有a(bc)=(ab)c
(M3) 分配律:对于S中的任意元素a,b,c,有a(b+c)=ab+ac和(a+b)c=ac+bc
[A1-M3]:环
(M4) 乘法交换律:对于S中的任意元素a和b,ab=ba
[A1-M4]:可交换环
(M5) 乘法单位元:对于S中的任意元素a,在S中存在一个元素i,使得ai=ia=a
(M6) 无零因子:对于S中的元素a,b,若ab=0,则有a=0或b=0
[A1-M6]:整环

(M7) 乘法逆元:如果a属于S,且a不为0,则S中存在一个元素a-1 ,全得aa-1=

a-1 a=1

[A1-M7]:域

在数学中,环和域是三种基本的代数结构,它们都与数学中的运算有关。 1. 是一个非空集合 G,配合一个二元运算“·”(通常称为乘法),满足以下四个条件: (1)封闭性:对于任意 a、b∈G,a·b∈G。 (2)结合律:对于任意 a、b、c∈G,有 (a·b)·c=a·(b·c)。 (3)单位元:存在一个元素 e∈G,使得对于任意 a∈G,有 a·e=e·a=a。 (4)逆元:对于任意 a∈G,存在一个元素 a^(-1)∈G,使得 a·a^(-1)=a^(-1)·a=e。 的运算具有封闭性、结合律、单位元和逆元四个基本性质,是一种具有良好代数性质的数学结构。 2. 环:环是一个非空集合 R,配合个二元运算“+”(通常称为环加法)和“·”(通常称为环乘法),满足以下四个条件: (1)R 在加法下构成一个交换。 (2)乘法对加法具有分配律,即对于任意 a、b、c∈R,有 a·(b+c)=a·b+a·c 和 (a+b)·c=a·c+b·c。 (3)乘法具有结合律,即对于任意 a、b、c∈R,有 (a·b)·c=a·(b·c)。 (4)存在一个元素 1∈R,使得对于任意 a∈R,有 a·1=1·a=a。 环是一种比更一般的代数结构,它具有加法和乘法个运算,可以用来研究各种数学问题。 3. 域:域是一个非空集合 F,配合个二元运算“+”(通常称为域加法)和“·”(通常称为域乘法),满足以下四个条件: (1)F 在加法下构成一个交换。 (2)F\{0} 在乘法下构成一个交换。 (3)乘法对加法具有分配律,即对于任意 a、b、c∈F,有 a·(b+c)=a·b+a·c 和 (a+b)·c=a·c+b·c。 (4)存在一个元素 1∈F,使得对于任意 a∈F,有 a·1=1·a=a。 域是一种比环更具有代数性质的数学结构,它具有加法和乘法个运算,并且除数不为零。域是代数学、数论和几何学等领域中的基本概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值