群、环、域对比

最近用到了抽象代数的相关知识,简单回顾一下

从群到环,再到域,这是一个条件逐渐收敛的过程

1.群

设G是一个非空集合,如果在G上定义了一个二元运算“·”,称为乘法(或“+”,称为加法),满足:

(1)对于G中任意元素a,b,c,有a·(b·c)=(a·b)·c;(结合律)

(2)存在e∈G,使得对任意a∈G都有e·a=a;(单位元)

(3)对于任意a∈G,都存在b∈G使得b·a=e;(逆元)

则称(G,·)为一个群。群是定义了一个二元运算“·”的代数结构。

如果非空集合G只满足上面条件中的(1),则称G为半群(semigroup)。全体整数Z、全体有理数Q、全体实数R均对数的乘法构成一个半群。

2.环

设R是一个非空集合,在其上定义两个二元运算,一个叫加法,记作"+",一个叫乘法,记作"·",满足:

(1)(R,+)是一个交换群;

(2)(R,·)是一个半群;

(3)乘法对加法成立左、右分配律,即对R中任意元素a,b,c,有:

a·(b+c)=a·b+a·c;(b+c)·a=b·a+c·a,

则称(R,+,·)为一个(ring)。

关于环的概念我们需要注意以下几点:
1)定义中的运算“+”与“·”是抽象运算,不一定是我们通常在整数中定义

2)当环R中的运算“·”满足交换律时,我们称环R为交换环
3)当环R中存在元素e,使得对环R中任意一个元素a都有e·a=a·e=a时,我们称e为环R的单位元,并且称环R为含单位元的环。通常在不会产生混淆时,a.b简记为ab;

加法单位元一般记作0,称为零元

乘法单位元一般记作1。同样这里0和1也是抽象元,不同于整数0和整数1。

举个栗子:

在通常意义的加法、乘法运算下,Z(整数集,它包括全体正整数、全体负整数和零),Q,R,C(复数集合)均构成环,且是交换环,加法单位元0即为数0,乘法单位元1即为数1。Z中所有m(m>1为整数)的倍数构成的集合mZ也对数的加法和乘法构成一个环。R上的全体一元多项式对多项式的加法和乘法也构成一个环。

整环:含有单位元的交换环,若没有零因子,则称之为整环。

Z,Q,R,C均为整环

除环或斜域:如果一个环中的非零元全体在乘法运算“·”下构成群,则称该环位除环(或斜域)

幺环:环R的乘法具有幺元(记为1)。显然,整数环Z是幺环,而全体偶数2Z不是幺环。

左零因子:设R是一个环,a∈R,a≠0,若存在b∈R,b≠0使得ab=0,则a称为一个左零因子(left zero divisor)。同样可定义右零因子。显然,整数环Z中没有零因子。如果环R中无零因子,则在其中消去律成立,即由ab=ac,a≠0可推出b=c。

3.域

域在交换环的基础上,还增加了二元运算除法,要求元素(除零以外)可以作除法运算,即每个非零的元素都要有乘法逆元。即是可交换的除环,是一个具有加法和乘法两种运算的非空集合,该集合关于加法运算构成Abel群,该集合中的非零元全体关于乘法运算也构成Abel群,且乘法对加法满足分配律。

设F为至少含两个元素的交换幺环,且全体非零元素对乘法构成一个群,则称环F为一个(field)。

由于域F中每个非零元素a都有逆元素a⁻¹,这样由ab=0,b≠0就有b=a⁻¹(ab)=0,因此域一定是整环。由于整环Z中并非每个非零元素都有逆,因此它并不是域,这说明整环不一定是域。但是可以证明:有限整环一定是域

若域F是复数域C的子集,则称F为数域。在数域F中,加、减、乘、除(除数不为零)的结果均在F内,这便得出有理数域是最小的数域

例:Q,R,C均为域,而Z不是域(非零整数集Z^{}*=Z\{0}对通常意义下的乘法,满足封闭性、结合性、交换律,也有单位元1,但不是每个元素都有逆元,因此Z^{}*对通常意义下的乘法不构成一个群)。

  • 1
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值