一、群(Group)
1. 定义:群是一个非空集合G,在其上定义了一个二元运算“·”(通常称为乘法,有时也用“+”表示,称为加法),满足以下条件:
• 封闭性:对于G中任意元素a,b,有a·b∈G。
• 结合律:对于G中任意元素a,b,c,有a·(b·c)=(a·b)·c。
• 单位元:存在e∈G,使得对任意a∈G,都有e·a=a·e=a。
• 逆元:对于任意a∈G,都存在b∈G,使得a·b=b·a=e。
2. 特点:群仅涉及一个二元运算,且该运算满足结合律。群中的元素关于这个运算可以构成一种对称结构。
二、环(Ring)
1. 定义:环是一个非空集合R,在其上定义了两个二元运算:加法“+”和乘法“·”,满足以下条件:
• 加法群:(R,+)是一个交换群,即加法满足封闭性、结合律、交换律,且存在加法单位元0和加法逆元。
• 乘法半群:(R,·)是一个半群,即乘法满足封闭性和结合律(但不一定满足交换律)。
• 分配律:对于R中任意元素a,b,c,有a·(b+c)=a·b+a·c和(b+c)·a=b·a+c·a。
2. 特点:环涉及两个二元运算,且这两个运算之间满足分配律。环中的加法运算构成了一个交换群,而乘法运算则构成了一个半群。
三、域(Field)
1. 定义:域是一个非空集合F,在其上定义了两个二元运算:加法“+”和乘法“·”,满足以下条件:
• 加法交换群:(F,+)是一个交换群,即加法满足封闭性、结合律、交换律,存在加法单位元0,且每个元素都有加法逆元。
• 乘法交换群:F中非零元素关于乘法构成一个交换群,即乘法满足封闭性(在非零元素间)、结合律、交换律,存在乘法单位元1(通常不等于0),且每个非零元素都有乘法逆元。
• 分配律:对于F中任意元素a,b,c,有a·(b+c)=a·b+a·c和(b+c)·a=b·a+c·a。
2. 特点:域是环的一种特殊情况,其中乘法运算也满足交换律,并且每个非零元素都有乘法逆元。这使得域成为了一个可以进行加减乘除(除数不为零)运算的代数结构。
四、比较分析
1. 运算数量:群只有一个二元运算,环有两个二元运算,域同样有两个二元运算但满足更多条件。
2. 单位元和逆元:群和环都有单位元,但环中的乘法不一定有逆元(除非是非零元素构成的乘法群)。域中每个非零元素都有乘法逆元。
3. 交换律:群和环中的乘法不一定满足交换律(但加法在环和域中都满足交换律)。域中的乘法和加法都满足交换律。
4. 代数结构:域是最强的代数结构,它包含了群和环的所有特性,并增加了非零元素乘法逆元的条件。环是群的扩展,增加了加法运算和分配律。群则是基础的代数结构,只涉及一个二元运算。