FOLD-R++系统:高效且可解释的归纳逻辑编程工具
1. 引言
随着机器学习技术的迅猛发展,越来越多的领域开始依赖机器学习模型来进行预测和决策。然而,这些模型往往被视为黑箱,难以解释其背后的逻辑。为了解决这一问题,可解释的人工智能(Explainable AI, XAI)成为研究热点。归纳逻辑编程(Inductive Logic Programming, ILP)作为一种机器学习方法,能够生成易于理解的逻辑规则,非常适合用于构建可解释的模型。
FOLD-R++是FOLD-R算法的一个改进版本,旨在提高效率和可扩展性,尤其适用于处理大规模数据集。FOLD-R++在性能上与流行的XGBoost和RIPPER算法相当,但在训练效率上更优,并且生成的模型是可解释的。
2. FOLD-R++简介
FOLD-R++是FOLD-R算法的改进版本,它通过引入前缀和优化信息增益计算、允许在规则的默认部分使用否定字面量、引入异常比率超参数等方法,显著提升了算法的效率和可扩展性。以下是FOLD-R++的主要特点:
2.1 前缀和优化信息增益计算
FOLD-R++通过使用前缀和(Prefix Sum)技术优化了信息增益的计算过程。信息增益计算是FOLD算法中最耗时的部分。假设N是从特定特征中唯一值的数量,M是训练示例的数量,那么计算特征所有可能字面量的信息增益的复杂度从O(M * N)降低到了O(M)。
2.2 否定字面量的支持
FOLD-R++允许在学习规则的默认部分使用否定字面量,这使得规则更加灵活和强大。例如,可以学习如下规则:
超级会员免费看
订阅专栏 解锁全文
29

被折叠的 条评论
为什么被折叠?



