- 博客(16)
- 收藏
- 关注
原创 用预训练的densenet121模型训练cifar10数据集
densenet121采用pytorch预训练模型,这里用cifar10作为数据集import torchvision.models as modelsimport sslssl._create_default_https_context = ssl._create_unverified_contextimport torchimport torch.nn as nnimport to...
2019-07-18 15:54:45 8100 6
原创 数据分析课程(2)pandas
series学习代码"""pandas 入门Author:sonnyDate:2019/06"""import pandas as pd"""pandas两种数据结构:Series,DataFrame"""from pandas import Series"""Series初始化方式:通过列表初始化,通过字典初始化"""list_series = Series([1,2,3...
2019-06-30 11:52:41 241 1
原创 pytorch学习笔记(三)用nn.cross_entropy所遇到的问题
Mnist数据集的图片尺寸一般是28*28 = 784,这里模拟一下搭建一个神经元的网络来进行预测和loss的计算,代码如下。import torchfrom torch import nnimport mathimport torch.nn.functional as Fclass Mnist_net(nn.Module): def __init__(self): ...
2019-06-25 11:12:51 4410
原创 数据分析课程(1)numpy的学习与使用
"""python 数据分析教程""""""知识点1,python的浮点数运算"""a = 1.1b = 4.2c = a + bprint (c)print ("c == 5.3?",c==5.3) #思考一下为什么?"""知识点2,python的decimal"""from decimal import Decimala = Decimal('1.1')b = Dec...
2019-06-23 14:44:58 227
原创 深度学习笔记--XGBOOST算法应用ctr预估模型
赛题地址:https://tianchi.aliyun.com/competition/myScore.htm?spm=5176.11165268.5678.7.78e3563388Unvl&raceId=231688代码如下import reimport pandas as pdimport numpy as npimport jsonimport lightgbm as l...
2019-06-23 14:42:35 392
原创 pytorch学习笔记(二)用numpy搭建一个简单的网络
在深度学习框架没出来之前,numpy是用来做机器学习的矩阵计算和梯度计算的,一直以来对与神经网络的权值更新机制不太了解,只知道是w = w -learningrate*梯度这种形式,在pytorch的教程中看到基于numpy的demo,特在此记录一下。import numpy as np"""use numpy"""N,D_in,H,D_out = 64,1000,100,10x = np...
2019-06-19 13:55:59 273
原创 pytorch学习笔记(一)cifar10分类
"""prepare the data"""import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformstransform = transforms.Compose( [transforms.ToTensor(), transfo...
2019-06-18 20:52:00 236
原创 leetcode --getIntersectionNode 解题报告
题目链接https://leetcode.com/problems/intersection-of-two-linked-lists/题意很好懂,问题在于如何找到相交的node,想到的最简单的方法从node的最后一个节点去往前数,遇到分叉,则返回当前节点,否则返回None。这里用两个list去保存node,从list的最后一个位置开始往前进。代码如下,超过99.84%的提交效率def g...
2019-05-15 15:38:52 355
原创 基于sklearn的SVM模型保存与调用
基于sklearn的SVM模型保存与调用(1)保存模型from sklearn.externals import joblibfrom sklearn import svmX = [[0, 0], [1, 1]]y = [0, 1]clf = svm.SVC()clf.fit(X, y) joblib.dump(clf, "my_model.m")(2)调用模型预测from...
2018-10-29 19:08:22 14164
原创 深度学习笔记--Kmeans算法实现
kmeans是最简单的聚类算法之一,具有出色的速度和良好的可扩展性,这里附上使用sklearn的包的简易实现。n_clusters是聚类的个数,这里选择2。Kmeans实现import numpy as npimport matplotlib.pyplot as pltimport sklearnfrom sklearn.cluster import KMeansif __name_...
2018-10-22 16:03:33 1234
原创 机器学习资料整理
网址:斯坦福大学机器学习笔记:https://legacy.gitbook.com/book/yoyoyohamapi/mit-ml/detailstensorflow官方文档:https://www.tensorflow.org/tutorials/keras中文文档:https://keras-cn.readthedocs.io/en/latest/keras英文官方文档:https:...
2018-10-12 12:58:37 185
原创 深度学习笔记--使用keras训练&保存&加载CNN模型
基于之前的一篇博文https://blog.csdn.net/creator180/article/details/82153625 里面介绍了如何使用keras建立cnn模型,加载mnist数据集,并且进行训练。那么问题来了,训练好的模型,如何进行保存进行利用?以及如何使用model进行预测新样本的类别,本文将给出详细介绍。 保存模型 模型的保存分为两步,一个是保存模型的结构,即archi...
2018-09-04 16:26:48 7138 1
原创 深度学习笔记--使用keras创建和加载VGG模型
VGG16模型,顾名思义,有16层,通过学习github上的源码,发现其中有13层为卷积层(conv),3层为全连接(Dense),还有若干层pooling层。 使用keras建立一个模型的instance有两种方式,一个是通过Input类构建,一个则是通过model类构建,具体的形式有所不同,本文采用Input类构建,这里默认输入图片大小为(50,50,3)。使用代码可以清晰看出VGG的每一层...
2018-09-01 17:54:00 4293 2
原创 深度学习笔记--使用keras创建CNN模型
深度学习笔记–使用keras&tensorflow创建模型keras是基于tensorflow开发的high-level 的API,官方网址地址: https://www.tensorflow.org/guide/keras keras中文网站:https://keras-cn.readthedocs.io/en/latest/ 相比于tensorflow,使用起来代码量更小,...
2018-08-28 19:54:57 2918
原创 算法学习笔记(python&c++实现)--快速排序
算法学习笔记–快速排序常见的排序算法复杂度如下表所示。本文使用python&c++实现一下快速排序算法。快速排序 快速排序的示例如上图所示,快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。步骤为:1、从数列中挑出一个元素,称为”基准”(pivot), 2、重新排序数列,所有比基准值小的元素摆...
2018-08-22 20:39:04 175
原创 算法学习笔记(python&c++实现)--冒泡排序&选择排序
算法学习笔记–冒泡排序&选择排序常见的排序算法复杂度如下表所示。冒泡排序和选择排序是排序算法中比较简单易懂的两种,原理不再赘述,本文使用python&java&c++实现一下这两种算法。冒泡排序冒泡排序顾名思义,就是通过类似冒泡操作的一次次的相邻位置替换,一次找到一个数字的正确位置(这里是最大值,第二大值……),如下图所示,话不多说上代码。 pyt...
2018-08-21 14:34:54 259 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人