基于sklearn的SVM模型保存与调用

基于sklearn的SVM模型保存与调用
(1)保存模型

from sklearn.externals import joblib
from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)  
joblib.dump(clf, "my_model.m")

(2)调用模型预测

from sklearn.externals import joblib
clf = joblib.load("my_model.m")
test_X = [[0.5, 0.5], [1.5, 1.5]]
print(clf.predict(test_X))

(3)对于训练模型精度查看,以及支持向量查看

print(clf.score(X,y))
print(clf.support_vectors_)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值