机器学习入门 | 找规律神器,最小二乘法及应用案例

生活中,你手机上未来几天的天气预报,经济学家预测的物价趋势,甚至健身APP上预测的你下个月的体重,这些看似“未卜先知”的能力,其实都藏着一个数学秘密:最小二乘法。

一、生活中需要 “找规律” 事情

假设你记录了班上5位同学每天的学习时间和考试成绩:

学习时间(小时) 考试成绩(分)
1 50
2 65
3 75
4 85
5 95

把这些点画在纸上,它们大致会排成一条斜线。但如果你试图用尺子画一条“最合适”的直线穿过这些点,确不知怎么判断哪条线最准,这就是最小二乘法要解决的问题。

二、最小二乘法的智慧

想象地上散落着许多小旗子(数据点),你需要画一条轨道(直线),让所有小旗子尽可能贴近轨道。最小二乘法的策略是:谁离轨道远,就重点“惩罚”谁。

它会做两件事:

  • 计算每个数据点到直线的垂直距离
  • 把所有距离平方后相加,找到总和最小的那条线

为什么用平方?

  • 避免正负距离相互抵消(比如-3和+3相加变0)

  • 放大远离直线的点的“错误”(比如距离2的平方是4,距离3的平方是9)

三、数学原理

假设我们想用直线方程 y = a + bx 描述学习时间和成绩的关系:

  • x 代表学习时间

  • y 代表预测的考试成绩

  • a 是起点分(完全不学习的成绩)

  • b 是学习效率(每多学1小时能提高多少分)

最小二乘法就像个智能调参师,通过计算自动找到最合适的 a 和 b,让预测线尽可能贴近所有真实数据点。

四、现实中的应用

  • 天气预报:根据历史气温数据预测未来温度
  • 股票预测:分析股价变化趋势(注意:股市有风险!)
  • 智能推荐:通过你的观影记录猜你喜欢的电影
  • 医学研究:分析药物剂量与疗效的关系
  • 经济学:预测GDP增长趋势
  • 工程学:校准传感器误差

✅ 擅长:

数据呈现直线趋势时预测精准

计算速度快,适合大数据分析

⛔ 不擅长:

遇到“拐弯”的数据(比如先上升后下降)会失效

容易被极端值带偏(比如有个同学通宵学习却考砸了)

五、现实中的应用

假如你收集到这样一组数据(某小区房价):

面积(㎡) 价格(万元)
80 320
100 380
120 420
150 480

算法原理

最小二乘法的核心:在一堆数据点中,连接一条直线,使得所有点到这条线的距离平方和最小。

数学表达式为:

min ⁡ β 0 , β 1 ∑ i = 1 n ( y i − ( β 0 + β 1 x i ) ) 2 \min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1x_i))^2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Turbo正则

如果对您有用请我喝杯咖啡吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值