C++基础算法11:SPFA求单源最短路径

1、概念

SPFA(Shortest Path Faster Algorithm,最短路径更快算法)是 Bellman-Ford 算法的一种队列优化版本,用于求解有向图中单源最短路径问题,可以处理带负权边的图(但不能有负权环)。

负权环是图中一条边权之和为负数的有向回路。两个特点:第一是能回到起点,第二是路径上的边权加起来小于 0。如果图中存在负权环,那么你可以不断走这个环来让路径越来越短。这会导致最短路径算法陷入死循环,所以像 Bellman-Ford 和 SPFA 都需要做负环检测

2、实战例子

给定n个节点,m条边。包含负权边,重环。

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

const int N = 1e5 + 10;
int h[N], e[N], w[N], ne[N], idx;  // 邻接表
int dist[N], state[N];  
int n, m;

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void spfa() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    queue<int> q;  // 用来存储未计算的点;删除已使用的点;
    q.push(1);
    state[1] = 1;

    while (!q.empty()) {
        int u = q.front(); q.pop();
        state[u] = 0;  // u被使用之后需要删除;因为u在后面可能会被再次用到;
        for (int i = h[u]; i != -1; i = ne[i]) {
            int v = e[i], cost = w[i];
            if (dist[v] > dist[u] + cost) {
                dist[v] = dist[u] + cost;
                if (!state[v]) q.push(v), state[v] = 1; //状态设置为1是保证不会被重复插入队列
            }
        }
    }
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    spfa();
    if (dist[n] == 0x3f3f3f3f) cout << "impossible";
    else cout << dist[n];
    return 0;
}

3、spfa和Dijkstra、Bellman_Ford比较

Dijkstra算法核心采用贪心算法,只能计算正权边的情况;

Bellman_Ford解决了Dijkstra的问题,但是每一次计算都要对所有边进行松弛,计算复杂;

spfa解决了Bellman_Ford的问题,每一次只需要考虑当前节点及相邻节点,计算效率更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值