大模型的UI自动化:Cline 使用Playwright MCP Server完成测试

大模型的UI自动化:Cline 使用Playwright MCP Server完成测试

MCP

MCP(Model Context Protocol),是一个开发的协议,标准化了应用程序如何为大模型提供上下文。MCP提供了一个标准的为LLM提供数据、工具的方式,使用MCP会更容易的构建Agent或者是基于LLM的复杂工作流。
最近越来越受到大家的追捧,也有很多网站开始提供全部的MCP Server、MCP Client等内容,推荐https://www.pulsemcp.com/,这个网站收录的MCP Server比较全面,也包含了MCP Client的介绍。

Cline使用Playwright MCP Server


这么多MCP Client,Cline目前看来适用法最简单的一个,Cline是VSCode

### 使用Cline和DeepSeek大模型进行自动化测试 #### Cline简介 Cline是一个命令行接口工具,用于与区块链交互。通过Cline可以发送交易、查询账户余额以及执行其他操作。这使得它成为开发人员调试和测试智能合约的理想选择[^1]。 #### DeepSeek大模型概述 DeepSeek大模型是一种先进的预训练语言模型,在自然语言处理领域表现出色。该模型能够理解复杂的语义结构并生成高质量的回答或代码片段。当应用于软件工程场景下时,可以帮助识别潜在错误模式并对程序行为做出预测分析[^2]。 #### 实施自动化测试最佳实践 对于基于CLI的应用程序来说,利用像pytest这样的框架来编写单元测试是非常有效的做法之一;而对于涉及AI组件的部分,则可以通过定义特定输入输出样本来验证其准确性。具体到本案例中: - **集成测试**:构建一系列针对不同功能模块的测试用例集,确保各个部分协同工作正常。例如,创建一个模拟环境以触发各种类型的链上事件,并记录响应时间及状态变化情况。 - **回归测试**:每当修改源码库之后都要重新运行全部现有测试套件,防止引入新的缺陷。特别是对于依赖于外部API调用的地方更应该加强监控力度。 - **性能评估**:除了关注功能性之外还要考虑效率方面的要求。借助profiler工具测量CPU占用率、内存消耗等指标,从而找出可能存在的瓶颈所在位置。 ```python import pytest from deepseek import predict def test_cline_command(): result = cline.execute('get_info') assert 'head_block_num' in result @pytest.mark.parametrize("input_text,expected", [ ("hello world", "Hello World"), ("good morning", "Good Morning") ]) def test_deepseek_model(input_text, expected): output = predict(input_text) assert output.lower() == expected.lower() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrissChan

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值