GDOI【JZOJ4793】妮厨的愤怒

15 篇文章 0 订阅
1 篇文章 0 订阅

Description

  栋栋和标标都是厨力++的妮厨。俗话说“一机房不容二厨”,他们两个都加入了某OI( )交流♂( )群,在钦定老婆的时候出现了偏差,于是闹得不可开交。可是栋栋是群内的长者,斗权限标标斗不过他。
  于是标标单方面找到了LL仲裁庭,还帮栋栋出了律师的钱,要求按基本法来判定。法官点点喝了口果汁,仔细审查了案子,说中央资瓷栋栋连任,这是最吼的;标标还naive ,不要总想着搞一个大新闻,像那个南海某岛国一样。
  标标不服,要到新日暮里和栋栋进行男人间的决斗♂。栋栋接住了标标丢去的蕾姆,并提出了一个问题:
  给定一个长度为n的字符串s,给出 q个询问,每次询问子串S[l..r] 的最长回文子串长度。字符串下标从0开始。
  标标被难住了,被禁言的他决定向你求助。

(以下内容为无意义灌水,请要怒 本次比赛的神犇跳过。)
如果这是galgame,那么轮到你选选项的时候了!
A.不帮并获得本题 分
B.帮助并被栋栋禁言
C.宣称自己也是妮厨与他们两个决斗
哪来的C选项啊QwQ

Data Constraint

对于20% 的数据,满足1<=n,q<=2*10^2
对于30% 的数据,满足1<=n,q<=2*10^3
对于100% 的数据,满足1<=n ,q<=10^5,0<=l<=r

Solution

这一看就知道是一道求最长回文子串的题。现在问题来了,要怎样去求区间的最长回文串呢?显然,对于一个询问[l,r],一个点的答案就转化为 min(min(p[i],il),rl) ,所以我们考虑一下二分答案。假设现在二分出一个答案x,真正的答案比x大的数肯定存在于[l+x,r-x]内,因为在其他地方由于 min(min(p[i],il),rl) 的限制会让答案小于x,所以只需在[l+x,r-x]内找一下p[i]的最大值,满足大于x就往右走。

代码

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200005;
int p[maxn],n,m,x,y,i,t,j,k,l,id,mx,r,mid,f[maxn*3];
char s[maxn],ch[maxn];
void insert(int l,int r,int v){
    int mid=(l+r)/2;
    if (l==r){
        f[v]=p[l];
        return;
    }
    insert(l,mid,v*2);insert(mid+1,r,v*2+1);
    f[v]=max(f[v*2],f[v*2+1]);
}
int find(int l,int r,int x,int y,int v){
    int mid=(l+r)/2,z=0;
    if (l>=x && r<=y) return f[v];
    if (l<=y && mid>=x) z=max(z,find(l,mid,x,y,v*2));
    if (mid<y && r>=x) z=max(z,find(mid+1,r,x,y,v*2+1));
    return z;
}
int main(){
//  freopen("data.in","r",stdin);
    scanf("%d\n",&n);
    scanf("%s\n",&ch);
    s[0]='#';
    for (i=0;i<n;i++)
        s[i*2+1]=ch[i],s[i*2+2]='#';
    n*=2;
    for (i=0;i<n;i++){
        if (mx>=i) p[i]=min(mx-i,p[id*2-i]);
        while (s[i+p[i]+1]==s[i-p[i]-1] && i+p[i]<n &&i-p[i]>0) p[i]++;
        if (i+p[i]>mx) mx=p[i]+i,id=i;
    }
    insert(0,n,1);
    scanf("%d",&m);
    for (i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        l=0;r=y-x+1;x=x*2+1;y=y*2+1;
        while (l<r){
            mid=(l+r+1)/2;
            if (find(0,n,x+mid-1,y-mid+1,1)>=mid) l=mid;
            else r=mid-1;
        }
        printf("%d\n",l);
    }
}
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值