JZOJ4888【NOIP2016提高A组集训第14场11.12】最近公共祖先

32 篇文章 0 订阅

Description

YJC最近在学习树的有关知识。今天,他遇到了这么一个概念:最近公共祖先。对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。YJC很聪明,他很快就学会了如何求最近公共祖先。他现在想寻找最近公共祖先有什么性质,于是他提出了这样的一个问题:n层的满k叉树T,求对于每一对(i,j)(1≤i,j≤T的点数),LCA(T,i,j)的深度的和是多少。这个数字n层的满k叉树指一棵带标号的有根树,深度为i( 0i<n )的点有k^i个,所有深度≠n-1的点都有k个孩子。YJC发现他不会做了,于是他来问你这个问题的答案。这个答案可能很大,你只需要告诉他答案%998244353的值就可以了。

Solution

我们设f[i]表示i层k叉数的数量,则 f[i]=ki1k1 那么我们发现 ans=n1i=0(f[ni+1]2kf[ni]2)iki ,代入得 ans=n1i=0(kni+11k12kkni1k12)iki 化简一下就得到 ans=n1i=0ikiik2ni+11k , ans=n1i=0ikiik2ni+11k 我们知道 n1i=0iki=nn1i=0kini=1i1j=0kj ,我们将 ik2ni+1 视为 ik2n+1(1k)i 所以将式子代入得 k2nk(2n1)kn(k1)(k1)3 。所以算法复杂度为O( logN ).

Code

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const ll maxn=1000005,mo=998244353;
ll f[maxn],n,i,t,j,k,l,m,ans,x;
ll sqr(ll x){
    return x*x%mo;
}
int main(){
    freopen("lca.in","r",stdin);freopen("lca.out","w",stdout);
    scanf("%lld%lld",&n,&k);
    f[1]=1;ans=0;n--;
    for (i=2;i<=n+1;i++)
        f[i]=(f[i-1]*k+1)%mo;
    x=1;
    for (i=0;i<=n;i++){
        t=x*((sqr(f[n-i+1])-k*sqr(f[n-i])%mo+mo)%mo)%mo;
        ans=(ans+t*i%mo)%mo;
        x=x*k%mo;
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值