Description
YJC最近在学习树的有关知识。今天,他遇到了这么一个概念:最近公共祖先。对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。YJC很聪明,他很快就学会了如何求最近公共祖先。他现在想寻找最近公共祖先有什么性质,于是他提出了这样的一个问题:n层的满k叉树T,求对于每一对(i,j)(1≤i,j≤T的点数),LCA(T,i,j)的深度的和是多少。这个数字n层的满k叉树指一棵带标号的有根树,深度为i( 0≤i<n )的点有k^i个,所有深度≠n-1的点都有k个孩子。YJC发现他不会做了,于是他来问你这个问题的答案。这个答案可能很大,你只需要告诉他答案%998244353的值就可以了。
Solution
我们设f[i]表示i层k叉数的数量,则 f[i]=ki−1k−1 那么我们发现 ans=∑n−1i=0(f[n−i+1]2−k∗f[n−i]2)∗i∗ki ,代入得 ans=∑n−1i=0(kn−i+1−1k−12−k∗kn−i−1k−12)∗i∗ki 化简一下就得到 ans=∑n−1i=0i∗ki−i∗k2∗n−i+11−k , ans=∑n−1i=0i∗ki−i∗k2∗n−i+11−k 我们知道 ∑n−1i=0i∗ki=n∗∑n−1i=0ki−∑ni=1∑i−1j=0kj ,我们将 i∗k2∗n−i+1 视为 i∗k2∗n+1∗(1k)i 所以将式子代入得 k2n−k−(2n−1)kn(k−1)(k−1)3 。所以算法复杂度为O( logN ).
Code
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const ll maxn=1000005,mo=998244353;
ll f[maxn],n,i,t,j,k,l,m,ans,x;
ll sqr(ll x){
return x*x%mo;
}
int main(){
freopen("lca.in","r",stdin);freopen("lca.out","w",stdout);
scanf("%lld%lld",&n,&k);
f[1]=1;ans=0;n--;
for (i=2;i<=n+1;i++)
f[i]=(f[i-1]*k+1)%mo;
x=1;
for (i=0;i<=n;i++){
t=x*((sqr(f[n-i+1])-k*sqr(f[n-i])%mo+mo)%mo)%mo;
ans=(ans+t*i%mo)%mo;
x=x*k%mo;
}
printf("%lld\n",ans);
}