NOIP2016提高组day1 †换教室

67 篇文章 1 订阅
4 篇文章 0 订阅

Description

这里写图片描述

Data Constraint

这里写图片描述

Solution

这道题一看就知道是道dp题。我们设f[i][j][k]表示当前做到第i段时间,调了j次教室,第i段时间是否换教室的最小路径。那么dp方程就很显然了。

f[i][j][0]=min(f[i1][j][0]+d(c[i1],c[i]),f[i1][j][1]+d(d[i1],c[i])p[i1]+d(c[i1],c[i])(1p[i1]))

这里解释一下后半部分:假如第i-1个点换了教室,他是有p[i-1]的概率是成功的,所以他在新教室d[i],而有1-p[i-1]的概率他失败了,所以他还在原来教室c[i-1].

xx=f[i1][j1][0]+d(c[i1],d[i])p[i]+d(c[i1],c[i])(1p[i])yy=f[i1][j1][1]+(d(d[i1],d[i])p[i1]+d(c[i1],d[i])(1p[i1]))p[i]+(d(d[i1],c[i])p[i1]+d(c[i1],c[i])(1p[i1]))(1p[i])f[i][j][1]=min(xx,yy)

解释同上面差不多。

Code

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define db double
using namespace std;
const int maxn=2005,maxn1=305;
int g[maxn1][maxn1],c[maxn],d[maxn];
int n,m,v,e,i,t,j,k,l,x,y,z;
db p[maxn],f[maxn][maxn][2],xx,yy,ans;
int main(){
    freopen("data.in","r",stdin);freopen("classroom.out","w",stdout);
    scanf("%d%d%d%d",&n,&m,&v,&e);
    for (i=1;i<=n;i++)
        scanf("%d",&c[i]);
    for (i=1;i<=n;i++)
        scanf("%d",&d[i]);
    for (i=1;i<=n;i++)
        scanf("%lf",&p[i]);
    memset(g,127,sizeof(g));l=g[1][1];
    for (i=1;i<=v;i++)
        g[i][i]=0,g[0][i]=0;
    for (i=1;i<=e;i++)
        scanf("%d%d%d",&x,&y,&z),g[x][y]=g[y][x]=min(g[x][y],z);
    for (k=1;k<=v;k++)
        for (i=1;i<=v;i++)
            if (i!=k && g[i][k]!=l)
                for (j=1;j<=v;j++)
                    if (k!=j && i!=j && g[k][j]!=l && g[i][k]+g[k][j]<g[i][j])g[i][j]=g[i][k]+g[k][j];
    for (i=0;i<=n;i++)
        for (j=0;j<=m;j++)
            f[i][j][0]=f[i][j][1]=10000000;
    f[0][0][0]=0;
    for (i=1;i<=n;i++){
        for (j=1;j<=m;j++){
            if (j>i) break;
            f[i][j][0]=min(f[i-1][j][0]+g[c[i-1]][c[i]],f[i-1][j][1]+g[d[i-1]][c[i]]*p[i-1]+g[c[i-1]][c[i]]*(1-p[i-1]));
            xx=f[i-1][j-1][0]+g[c[i-1]][d[i]]*p[i]+g[c[i-1]][c[i]]*(1-p[i]);
            yy=f[i-1][j-1][1]+(g[d[i-1]][d[i]]*p[i-1]+g[c[i-1]][d[i]]*(1-p[i-1]))*p[i]+(g[d[i-1]][c[i]]*p[i-1]+g[c[i-1]][c[i]]*(1-p[i-1]))*(1-p[i]);
            f[i][j][1]=min(xx,yy);
        }
        f[i][0][0]=f[i-1][0][0]+g[c[i-1]][c[i]];
    }
    ans=1e7;
    for(j=0;j<=m;j++)
        ans=min(ans,min(f[n][j][0],f[n][j][1]));
    printf("%.2lf\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值