Description
Data Constraint
Solution
这又是一道组合数的题。我们枚举现在至少有x行y列没有放至少一个棋子,那么要选择这x行y列的方案显然为
CxN∗CyM
,由于剩下的N-x行和M-y列需要放棋子,这些棋子有c+1种颜色(我们把不放棋子视为第c+1种颜色),且除了第c+1种颜色,其他颜色不能为空。这就让人想到了第二类Stirling,我们设f[i][j]表示有i个棋子填入j种无差别颜色的方案,那么
f[i][j]=f[i−1][j−1]+j∗f[i−1][j]
。但题目内的颜色是有差别的,所以,对于第c+1种颜色不为空的情况,显然有f[(N-x)* (M-y)][c+1]* (c+1)!,对于第c+1种颜色为空的情况,显然有f[(N-x)*(M-y)][c]*c!,相加即可。至少有x行y列没有放至少一个棋子的方案为
CxN∗CyM∗(f[(N−x)∗(M−y)][c]∗c!+f[(N−x)∗(M−y)][c+1]∗(c+1)!)
。
但注意,我们的定义是至少有x行y列,所以会有重复的情况,这时就需要容斥一下,所以是最后就为
ans=∑Nx=0∑My=0(−1)x+y∗CxN∗CyM∗(f[(N−x)∗(M−y)][c]∗c!+f[(N−x)∗(M−y)][c+1]∗(c+1)!)
Code
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const ll mo=1e9+7,maxn=403;
int f[maxn*maxn][maxn];
ll c[maxn];
ll n,m,i,t,j,k,l,p,ans,x,y,z;
ll mi(ll x,ll y){
if (y==1) return x;
ll t=mi(x,y/2);
if (y%2) return t*t%mo*x%mo;return t*t%mo;
}
ll dg(ll x,ll y){
return c[x]*mi(c[y]*c[x-y]%mo,mo-2)%mo;
}
int main(){
// freopen("data.in","r",stdin);
scanf("%lld%lld%lld",&n,&m,&p);c[0]=1;
for (i=1;i<=400;i++)
c[i]=c[i-1]*i%mo;
f[0][0]=1;
for (i=1;i<=n*m;i++)
for (j=1;j<=min(i,p+1);j++)
f[i][j]=(ll)(j*f[i-1][j]%mo+f[i-1][j-1])%mo;
for (i=1;i<=n*m;i++)
for (j=1;j<=p+1;j++)
f[i][j]=(ll)f[i][j]*c[j]%mo;
for (i=0;i<=n;i++){
x=dg(n,i);
for (j=0;j<=m;j++){
if ((i+j)%2) z=-1;
else z=1;
y=(ll)(f[(n-i)*(m-j)][p+1]+f[(n-i)*(m-j)][p])%mo*x%mo*dg(m,j)%mo;
ans=(ans+y*z+mo)%mo;
}
}
printf("%lld\n",ans);
}