python3 只是爬虫开发的编程语言,开发爬虫还需要很多其他环境,比如 IDE 工具,常用库等等. 根据我的使用体验,推荐如下环境搭建步骤,桌面环境为 Windows 10.
- 安装 Anaconda
Anaconda 是一个集成度很高的基于 python 的数据科学平台,无论在开发爬虫还是机器学习等方面,都游刃有余. Anaconda 包含 250 多个数据科学包和自带的包管理工具 conda,一行命令就可以轻松安装绝大部分依赖库, 比如 Scikit-Learn, Scipy, Tensorflow 等.
安装这个软件跟着提示走就可以,唯一要注意的地方就是软件的安装目录最好是英文的,并且不能有空格. 安装好后找到如下图所示三个图标.
比较常用的就是这三个应用了, Anaconda 在安装好后已经为我们配好了自己的系统环境和 python3 的环境,通常安装依赖的话只需要在命令行终端 Anaconda Prompt 直接执行 conda 命令就好.
比如,可以使用下面的命令查看当前配置的环境路径:
>conda env list
# conda environments:
#
base * D:\ProgramFiles\Anaconda
使用下面的命令查看不同路径下的 python:
>where python
D:\ProgramFiles\Anaconda\python.exe
查看当前使用的 python 的版本信息:
>python --version
Python 3.6.3 :: Anaconda custom (64-bit)
查看当前环境下已经安装好的包:
>conda list
# packages in environment at D:\ProgramFiles\Anaconda:
#
# Name Version Build Channel
_ipyw_jlab_nb_ext_conf 0.1.0 py36he6757f0_0
alabaster 0.7.10 py36hcd07829_0
anaconda custom py36h363777c_0
anaconda-client 1.6.14 py36_0
anaconda-navigator 1.8.3 py36_0
anaconda-project 0.8.0 py36h8b3bf89_0
asn1crypto 0.22.0 py36h8e79faa_1
astroid 1.5.3 py36h9d85297_0
astropy 2.0.2 py36h06391c4_4
babel 2.5.0 py36h35444c1_0
backports 1.0 py36h81696a8_1
backports.shutil_get_terminal_size 1.0.0 py36h79ab834_2
beautifulsoup4 4.6.0 py36hd4cc5e8_1
bitarray 0.8.1 py36h6af124b_0
bkcharts 0.2 py36h7e685f7_0
blaze 0.11.3 py36h8a29ca5_0
bleach 2.0.0 py36h0a7e3d6_0
bokeh 0.12.10 py36h0be3b39_0
boto 2.48.0 py36h1a776d2_1
bottleneck 1.2.1 py36hd119dfa_0
bzip2 1.0.6 vc14hdec8e7a_1 [vc14]
ca-certificates 2017.08.26 h94faf87_0
cachecontrol 0.12.3 py36hfe50d7b_0
certifi 2017.7.27.1 py36h043bc9e_0
cffi 1.10.0 py36hae3d1b5_1
chardet 3.0.4 py36h420ce6e_1
click 6.7 py36hec8c647_0
cloudpickle 0.4.0 py36h639d8dc_0
clyent 1.2.2 py36hb10d595_1
colorama 0.3.9 py36h029ae33_0
comtypes 1.1.2 py36heb9b3d1_0
conda 4.5.1 py36_0
conda-build 3.0.27 py36h309a530_0
conda-env 2.6.0 h36134e3_1
conda-verify 2.0.0 py36h065de53_0
console_shortcut 0.1.1 h6bb2dd7_3
contextlib2 0.5.5 py36he5d52c0_0
cryptography 2.0.3 py36h123decb_1
curl 7.55.1 vc14hdaba4a4_3 [vc14]
cycler 0.10.0 py36h009560c_0
cython 0.26.1 py36h18049ac_0
cytoolz 0.8.2 py36h547e66e_0
dask