数论算法学习笔记(一):素数

整除

素数在整除的定义上衍生而来。于是就得先看一下整除的定义:
对于 a , b ∈ Z , a ≠ 0 a, b \in \mathbb{Z}, a \neq 0 a,bZ,a=0,若 ∃ r ∈ Z \exists r \in \mathbb{Z} rZ,使得 b = a r b=ar b=ar,就可以说 b b b 可以被 a a a 整除,记作 a ∣ b a \mid b ab,否则,则称 a a a 不能整除 b b b,记作 a ∤ b a \nmid b ab
那么若 a ∣ b a \mid b ab,则称 a a a b b b 的约数, b b b a a a 的倍数。特殊地, 0 0 0 是任何非 0 0 0 整数的倍数。
显而易见的是,对于 b ≠ 0 b \neq 0 b=0 b b b 只有有限个约数。
对于 b ≠ 0 b \neq 0 b=0,我们称 ± 1 , ± b \pm 1, \pm b ±1,±b b b b 的平凡约数。特殊地,当 b = ± 1 b = \pm 1 b=±1 时, b b b 只有 2 2 2 个平凡约数。 b b b 的其余约数被称为 b b b 的真约数。
在具体问题中,如果没有特殊说明,我们所指的约数总是指正约数。
若对于 a , b ∈ Z a, b \in \mathbb{Z} a,bZ a a a b b b 的最大公约数 gcd ⁡ ( a , b ) = 1 \gcd (a,b) = 1 gcd(a,b)=1,则称 a , b a, b a,b 互素。

同余

素数往往涉及到同余,所以在写素数之前,先要写一点同余。
先给出余数的定义:
a , b ∈ Z , a ≠ 0 a, b \in \mathbb{Z}, a \neq 0 a,bZ,a=0,设 d ∈ Z d \in \mathbb{Z} dZ,则一定存在唯一的一对 q q q r r r,满足 b = q a + r , d ≤ r < ∣ a ∣ + d b = qa+r, d \le r < |a|+d b=qa+r,dr<a+d,那么 q q q 就是商, r r r 就是余数。在一般情况下, d = 0 d=0 d=0,则此时的 r r r 被称为最小非负余数。如果没有特殊说明,余数总是指最小非负余数。
同余的定义:
m ∈ Z m \in \mathbb{Z} mZ,若 m ∣ ( a − b ) m \mid (a-b) m(ab),则可以记作 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),这样的等式就被叫做同余式。其中, m m m 为模(数), a a a 同余于 b b b m m m b b b a a a 对模 m m m 的剩余。如果没有特殊说明,模数总是正整数。

素数

设整数 p ≠ 0 , ± 1 p \neq 0, \pm 1 p=0,±1,若 p p p 除了平凡约数之外没有其他的约数,则称 p p p 是一个素数。否则, p p p 是一个合数。
p p p − p -p p 总是同为素数或同为合数。但若无特殊说明,素数总是指正的素数。
若一个整数的约数是一个素数,那这个素数被称作这个整数的素约数(素因数)。

算数基本定理(唯一分解定理)

对于整数 a a a,在不计次序的情况下,有唯一等式成立:
a = p 1 α 1 p 2 α 2 ⋯ p n α n a=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_n^{\alpha_n} a=p1α1p2α2pnαn
其中 p 1 , p 2 , ⋯   , p n p_1, p_2, \cdots, p_n p1,p2,,pn 是素数。这个等式被称为整数 a a a 的标准素因数分解式。

素数的判定

知道了什么是素数,那么我们就要知道如何判断这个数是不是素数。
常用试除法判断:

bool isprime(int a)
{
	if (a<2)
	{
		return false;
	}
	for (int i=2;i*i<=n;i++)
	{
		if (a%i==0)
		{
			return false;
		}
	}
	return true;

也可以使用概率算法 Fermat 和 Miller-Rabin:

int qpow(int a,int b,int p)
{
	int ans=1;
	while (b>0)
	{
		if (b&1)
		{
			ans=ans*a%p;
		}
		a=a*a%p;
		b>>=1;
	}
	return ans;
}
bool fermat(int n)
{
	if (n<3)
	{
		return n==2;
	}
	for (int i=1;i<=ttime;i++) //ttime>8, below is the same.
	{
		int a=rand()%(n-2)+2;
		if (qpow(a,n-1,n)!=1)
		{
			return false;
		}
	}
	return true;
}
bool millerrabin(int n)
{
	if (n<3||n%2==0)
	{
		return n==2;
	}
	int u=n-1,t=0;
	while (n%2==0)
	{
		u/=2;
		t++;
	}
	for (int i=1;i<=ttime;i++)
	{
		int a=rand()%(n-2)+2,v=qpow(a,u,n);
		if (v==1)
		{
			continue;
		}
		int flg=0;
		for (flg=0;s<t;s++)
		{
			if (v==n-1)
			{
				break;
			}
			v=(long long)v*v%n;
		}
		if (flg==t)
		{
			return false;
		}
	}
	return true;
}

筛法

既然我们知道了素数,那么我们就有必要知道怎么找到素数。筛法可以帮助我们找到自然数内小于等于 n n n 的范围内的素数个数。

埃氏筛

考虑到任何素数的倍数(除了自己以外)都是合数,那么我们就可以标记出所有的合数,那么剩下的就是素数。

#define MAXN 
int isprime[MAXN];
int Enes(int n)
{
	int ans=0;
	for (int i=0;i<=n;i++)
	{
		isprime[i]=1;
	}
	isprime[0]=isprime[1]=0;
	for (int i=2;i<=n;i++)
	{
		if (isprime[i])
		{
			prime[ans++]=i;
			if ((long long)i*i<=n)
			{
				for (int j=i*i;;j<=n;j+=i)
				{
					isprime[j]=0;
				}
			}
		}
	}
	return ans;
}

可以证明,埃氏筛的时间复杂度为 O ( n log ⁡ log ⁡ n ) O(n \log \log n) O(nloglogn)

线性筛(欧拉筛)

如果只让每个合数被标记一次,那么时间复杂度就可以降到 O ( n ) O(n) O(n) 了。

#define MAXN
bool vis[MAXN];
int pri[MAXN],cnt;
void euler(int n)
{
	for (int i=2;i<=n;i++)
	{
		if (!vis[i])
		{	
			pri[cnt++]=i;
		}
		for (int j=0;j<cnt;j++)
		{
			if (1ll*i*pri[i]>n)
			{
				break;
			}
			vis[i*pri[i]]=true;
			if (i%pri[i]==0)
			{
				break;
			}
		}
	}
}

筛法的应用

筛法有很多应用。

筛法求约数个数

按规矩,我们使用 d [ i ] d[i] d[i] 表示 i i i 的约数个数, n u m [ i ] num[i] num[i] 表示 i i i 的最小素约数出现的次数。于是就有:

约数个数定理

n = ∏ i = 1 m p i c i n=\prod_{i=1}^{m} p_i^{c_i} n=i=1mpici

d [ i ] = ∏ i = 1 m ( c i + 1 ) d[i]=\prod_{i=1}^{m} (c_i+1) d[i]=i=1m(ci+1)

代码:

void quantity()
{
	d[1]=1;
	for (int i=2;i<=n;i++)
	{
		if (!vis[i])
		{
			pri[++cnt]=i;
			d[i]=2;
			num[i]=1;
		}
		for (int j=1;j<=cnt&&i<=n/pri[j];j++)
		{
			vis[i*pri[j]]=true;
			if (i%pri[j]==0)
			{
				num[i*pri[j]]=num[i]+1;
				d[i*pri[j]]=d[i]/num[i*pri[j]]*(num[i*pri[j]]+1);
				break;
			}
			else
			{
				num[i*pri[j]]=1;
				d[i*pri[j]]=2*d[i];
			}
		}
	}
}			

筛法求约数和

f [ i ] f[i] f[i] i i i 的约数和, g [ i ] g[i] g[i] 表示最小素约数的 p 0 + p 1 + ⋯ + p k p^0+p^1+\cdots+p^k p0+p1++pk

代码:

void sum()
{
	f[1]=g[1]=1;
	for (int i=2;i<=n;i++)
	{
		if (!vis[i])
		{
			vis[i]=true;
			pri[++cnt]=i;
			f[i]=i+1;
			g[i]=i+1;
		}
		for (int j=1;j<=cnt&&i<=n/pri[j];j++)
		{
			vis[i*pri[j]]=true;
			if (i%pri[j]==0)
			{
				g[i*pri[j]]=g[i]*pri[j]+1;
				f[i*pri[j]]=f[i]/g[i]*g[i*pri[j]];
				break;
			}
			else
			{
				f[i*pri[j]]=f[i]*pri[j];
				g[i*pri[j]]=pri[j]+1;
			}
		}
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值