众所周知,线性代数是一门严谨却又不那么严谨的学科,我们常常从原始定义中得到高度抽象的结果,偶尔还能得到一些玄学结论。本人在学习线代课程时,无意中生发了这样一种想法:分块矩阵也可以进行初等变换吗?
我在计算分块行列式如时,无意中使用了类似初等变换求最简形的手法(Gauss消元法),将第一行乘以一个矩阵加到第二行上,消去C得到
后,通过上三角矩阵的行列式结论,竟然能够求得正确结果。我又试着对上三角矩阵求逆,结果竟然仍是符合。我猜想,分块矩阵也可以进行初等变换。
通常来说,初等变换是指对矩阵元素的三种变换,与初等矩阵一一对应。现在,我将其扩展到四分块矩阵上。根据分块矩阵的乘法,1)对换两行/两列:主对角线的两个E换到次对角线上;2)某行乘以k:行中的分块矩阵各左乘(注意,只能是左乘)矩阵K;3)某行乘以k加到另一行上:同2)。
定义中涉及的“重定义初等变换”分别对应三种“重定义初等矩阵”,如图所示。它们的逆矩阵如下&#