最大子列和问题(20)

给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

输入格式:

输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:
6
-2 11 -4 13 -5 -2
输出样例:

20

主函数如下

#include <stdio.h>
#define MAXSIZE 100000
int MaxSubseqSum(int A[], int N);

int main()
{
	int N, i, Max;
	int A[MAXSIZE];
	scanf("%d", &N);
	for(i = 0;i < N; i++)
	{
		scanf("%d", &A[i]);
	}
	Max = MaxSubseqSum(A, N);
	printf("%d", Max);
	return 0;
}

分治算法:

int MaxSubseqSum(int A[], int N)
{
	int ThisSum, MaxSum = 0;
	int i, j;
	for(i = 0; i < N; i++)
	{
		ThisSum = 0;
		for(j = i; j < N; j++)
		{
			ThisSum += A[j];
			if(ThisSum > MaxSum)
			{
				MaxSum = ThisSum;
			}
		}
	}
	return MaxSum;
}

在线算法:

int MaxSubseqSum(int A[], int N)
{
	int ThisSum, MaxSum;
	int i;
	ThisSum = MaxSum = 0;
	for(i = 0; i < N; i++)
	{
		ThisSum += A[i];
		if(ThisSum > MaxSum)
		{
			MaxSum = ThisSum;
		}
		else if (ThisSum <0)
		{
			ThisSum = 0;
		}
	}
	return MaxSum;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值