给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
输入格式:
输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:6 -2 11 -4 13 -5 -2输出样例:
20
主函数如下
#include <stdio.h>
#define MAXSIZE 100000
int MaxSubseqSum(int A[], int N);
int main()
{
int N, i, Max;
int A[MAXSIZE];
scanf("%d", &N);
for(i = 0;i < N; i++)
{
scanf("%d", &A[i]);
}
Max = MaxSubseqSum(A, N);
printf("%d", Max);
return 0;
}
分治算法:
int MaxSubseqSum(int A[], int N)
{
int ThisSum, MaxSum = 0;
int i, j;
for(i = 0; i < N; i++)
{
ThisSum = 0;
for(j = i; j < N; j++)
{
ThisSum += A[j];
if(ThisSum > MaxSum)
{
MaxSum = ThisSum;
}
}
}
return MaxSum;
}
在线算法:
int MaxSubseqSum(int A[], int N)
{
int ThisSum, MaxSum;
int i;
ThisSum = MaxSum = 0;
for(i = 0; i < N; i++)
{
ThisSum += A[i];
if(ThisSum > MaxSum)
{
MaxSum = ThisSum;
}
else if (ThisSum <0)
{
ThisSum = 0;
}
}
return MaxSum;
}