Android内存

本文介绍了Dalvik虚拟机的垃圾回收机制,并详细解释了通过adb logcat命令获取的垃圾回收日志信息,包括不同类型的垃圾回收触发条件及输出内容的具体含义。

原文:http://www.cnblogs.com/wanqieddy/archive/2012/07/26/2610048.html

一般Java虚拟机要求支持verbosegc选项,输出详细的垃圾收集调试信息。dalvik虚拟机很安静的接受verbosegc选项,然后什么都不做。dalvik虚拟机使用自己的一套LOG机制来输出调试信息。 

如果在Linux下运行adb logcat命令,可以看到如下的输出: 
D/dalvikvm(  745): GC_CONCURRENT 
freed 199K, 53% free 3023K/6343K,external 0K/0K, paused 2ms+2ms 

其中D/dalvikvm表示由dalvikvm输出的调试信息,括号后的数字代表dalvikvm所在进程的pid。 

GC_CONCURRENT表示触发垃圾收集的原因,有以下几种:

    • GC_MALLOC, 内存分配失败时触发
    • GC_CONCURRENT,当分配的对象大小超过384K时触发
    • GC_EXPLICIT,对垃圾收集的显式调用(System.gc)
  • GC_EXTERNAL_ALLOC,外部内存分配失败时触发
freed 199K表示本次垃圾收集释放了199K的内存,
53% free 3023K/6343K,其中6343K表示当前内存总量,3023K表示已用内存,53%表示可用内存占总内存的比例。
external 0K/0K,表示可用外部内存/外部内存总量 
paused 
2ms+2ms,第一个时间值表示markrootset的时间,第二个时间值表示第二次mark的时间。如果触发原因不是GC_CONCURRENT,这一行为单个时间值,表示垃圾收集的耗时时间。
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值