The sum problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8287 Accepted Submission(s): 2530
Problem Description
Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
Sample Input
20 10 50 30 0 0
Sample Output
[1,4] [10,10] [4,8] [6,9] [9,11] [30,30]
我本来的想法是考虑子列的起点和终点,分别以s和e表示,由等差数列求和公式有(s+e)*(e-s+1)/2==M(1式),化为e*(e+1)-s*(s-1)==2*M, so , e=(int)sqrt(2*M+s*(s-1)),将得到的e再代回1式,成立则[s,e]满足条件。
但是,2*M+s*(s-1)太大……
后来参考网上的一个算法,不考虑子列的终点,而是考虑子列的起点和子列元素的个数,分别记为i,j。由等差数列求和公式,得(i+(i+j-1))*j/2==M ,即(2*i+j-1)*j/2==M(2式),故得i=(2*M/j-j+1)/2,将i,j代回2式,成立则[i,i+j-1]满足条件。注意j最小为1,而由2式,得(j+2*i)*j=2*M,而i>=1,故j*j<=(int)sqrt(2*M).
AC code:
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int N,M,i,j;
while(scanf("%d%d",&N,&M) && M+N)
{
for(j=pow(2.0*M,0.5);j>0;j--)
{
i=(2*M/j-j+1)/2;
if(j*(j+2*i-1)/2==M) printf("[%d,%d]\n",i,i+j-1);
}
printf("\n");
}
return 0;
}