推荐论文阅读之多任务建模ESM2

本文介绍了CVR转化率预估中的样本选择偏差和数据稀疏问题,以及ESM2模型如何通过多任务学习解决这些问题。ESM2模型由SEM、DPM和SCM三个模块组成,分别负责embedding权重共享、单任务预测和多任务组合,以预测CVR。通过分解用户行为序列,模型利用更多的曝光样本和行为数据,提高预测准确性并缓解数据稀疏问题。
摘要由CSDN通过智能技术生成

介绍

CVR转化率预估过程中存在样本选择偏差数据稀疏问题。这两个问题在阿里的上一篇论文ESMM中有提到,这里介绍一下。

  • 样本选择偏差:CVR模型建模通常使用点击后的样本post-click,或者说使用记录用户在点击后是否产生订单的数据;而模型在实际应用过程中是在整个样本空间上,用户还没有发生点击。这就导致数据有偏,不同分布。在post-click样本上建模后,在实际应用过程中并不能保证模型的准确性,而且应用模型的泛化能力。

样本空间

  • 数据稀疏:在电商系统,如淘宝,用户的行为链,通常包括曝光、点击、购买,各个阶段的数据量逐渐减少。使用post-click数据建模,这部分数据量相较于用于CTR训练的数据少1-3个数量级。

ESMM模型使用多任务学习,分别学习post-view点击率CTR和post-view 点击转化率CTCVR,目标CVR通过两者计算得到CVR=CTCVR/CTR;点击率CTR是在整个样本空间上,即所有的曝光样本进行训练,CTCVR也是在整个曝光样本上进行训练,pCTCVR=pCTR*pCVR,最终的CVR任务也是在整个曝光样本上进行训练,应用,这样就可以解决样本选择偏差问题。同时两个任务CTR、CVR底层的embedding权重是共享的,可以缓解数据稀疏问题。但是由于订单样本相较于曝光样本来说是在是太少,只有不到0.1%的曝光样本最后产生了订单;数据稀疏问题不能得到充分解决。

行为分析

通过对用户的网购行为进行分析,发现用户在发生点击行为后通常会有几种和购买行为相关的操作,进而提出了一种将post-click行为分解的建模方法。post-click行为根据是否和购买行为相关,可以分为决定性行为Deterministic和其他行为,决定性行为包括:加入购物车,加入心愿清单。这两种行为插在点击和购买之间,形成行为序列"曝光->点击->D(O) Action ->购买"。在这个行为序列图上进行模型建模,可以充分利用整个样本空间上的曝光样本,此外,由于加入购物车、加入心愿清单的样本数据相比购买数据会大很多,使用来自D、O Action的监督信号可以同时有效解决抽样选择偏差和数据稀疏问题。

基于这个想法,提出了ESM2模型。根据在序列图上定义的条件概率,使用多任务学习分别预测各自的小目标,然后将它们合并构成最终的CVR预测结果。

image-20201121155346640

模型分为3个模块:SEM、DPM和SCM。其中SEM,embedding权重共享层,在多个子任务之间共享权重,充分利用所有的曝光样本数据;DPM,分解预测模块,分解计算自己的任务task;最后是SCM,序列组合模块,将多任务的结果进行组合,构成最终的目标CVR。

简单来说,ESM2的三个模块,功能分别是embedding训练结果共享、单任务训练,多任务组合得到最终结果CVR。

用户行为序列"曝光-> 点击->D/O Action -> 购买",从收集到的数据集,我们可以知道构建不同的标签,是否点击、是否点击&发生D行为、是否点击&发生O行为,是否点击&是否转化(可以简化为是否转化),因为D行为和O行为是互斥的,点击&发生O行为=1-点击&发生D行为。不同的标签就可以用于不同的任务进行学习、训练。

任务分解

曝光-> 点击:点击率建模。在整个曝光样本上进行训练。

pctr

表示曝光后发生点击的概率,v表示是否发生曝光,取值为{0,1};c表示是否发生点击行为,取值为{0,1}。下标i表示第i个曝光样本。 p i c t r = y 1 i p_i^{ctr}=y_{1i} pictr=y1i

曝光-> 点击 -> D Action:在整个曝光样本上进行建模。

ctavr

其中,a表示是否发生D行为,取值为{0,1}。

根据全概率公式可以,曝光样本发生D行为的概率等于曝光样本发生点击&D行为的概率 + 曝光样本未发生点击但发生D行为的概率。因为如果曝光样本发生了D行为,那么必然发生了点击行为,所以 p ( a i

09-14 4254
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值