KC1B
码龄4年
关注
提问 私信
  • 博客:58,803
    社区:1
    问答:26
    58,830
    总访问量
  • 53
    原创
  • 42,280
    排名
  • 19
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:脚踏实地脚踏实地

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2020-10-29
博客简介:

qq_52038588的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    639
    当月
    4
个人成就
  • 获得76次点赞
  • 内容获得10次评论
  • 获得146次收藏
创作历程
  • 2篇
    2024年
  • 25篇
    2023年
  • 26篇
    2022年
成就勋章
TA的专栏
  • 论文笔记
    35篇
  • 算法
    1篇
  • Pytorch实现
    4篇
  • KanColle
    1篇
兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Adobe Illustrator如何在图片快速插入latex公式

Adobe Illustrator没法直接输入latex公式,也没有公式的字体。
原创
发布博客 2024.10.16 ·
418 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

PICKLE:gpu调用错误

问题:明明写了cuda:0仍然在开始时会调用gpu1原因:使用pickle.load的文件保存时,tensor就是在gpu1上,于是在load时pickle也直接读到gpu1上解决:pickle保存时换到gpu0,或者提取的模型移到gpu0上
原创
发布博客 2024.02.27 ·
488 阅读 ·
12 点赞 ·
0 评论 ·
6 收藏

解决:RuntimeError: Expected all tensors to be on the same device, but found at least two devices

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0
原创
发布博客 2023.11.24 ·
2493 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

解决:UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars;

UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars;will instead unsqueeze and return a vector.
原创
发布博客 2023.11.24 ·
977 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

FD-Align论文阅读

主要工作是针对微调的和之前的prompt tuining,adapter系列对比。
原创
发布博客 2023.11.12 ·
512 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

DeCLIP 论文阅读

论文是为了充分利用单模态和多模态,充分利用单模态特征用自监督(SIMSAM和MLM),多模态用图像文本对比学习实现;一个图片的文本描述大部分都是集中在,作者使用RRC得到一个图像的局部区域进行实现;一个图片有多种描述方式,提出用最近邻文本检索得到更多文本监督。(i.e.,对图像的文本描述1的特征向量在队列库中求余弦相似性得到最相似的描述2)在SLIP基础上新增一个文本域的自监督,即该论文使用图片自监督+文本自监督+两倍图像-三倍文本对的对比学习。
原创
发布博客 2023.11.12 ·
603 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CLIP Surgery论文阅读

Mnorm​resize​reshape​​Fi​​​2​Fiˉ​​⋅​Ft​​​2​Ft​​⊤​​​重点是CLIP的图可视化,上面是CLIP Surgery可视化的公式。
原创
发布博客 2023.11.06 ·
1778 阅读 ·
2 点赞 ·
3 评论 ·
0 收藏

MolFormer分子预训练模型

molformer分子预训练语言模型
原创
发布博客 2023.11.01 ·
273 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

ESM蛋白质语言模型系列

第一篇《Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences 》ESM-1b第二篇《MSA Transformer》在ESM-1b的基础上作出改进,将模型的输入从单一蛋白质序列改为MSA矩阵,并在Transformer中加入行、列两种轴向注意力机制,对位点分别计算第个序列和第个对齐位置的影响,充分利用二维输入的优势。
原创
发布博客 2023.10.29 ·
5802 阅读 ·
6 点赞 ·
1 评论 ·
19 收藏

GLIP,FLIP论文阅读

1.图像端引入MAE的随机MASK,image encoder只处理未mask的patches(和之前的MAE方法一致),减少了输入序列长度加速训练,减少memory开销。text端没引入mask是因为text信息比较dense(图片信息比较稀疏),mask掉效果反而不好,之后是选择mask掉textpadding的地方提升了精度。2.做了三个方面的scale:说明model和data的scale还是很重要的,不同数据集相同大小也会对模型造成影响。
原创
发布博客 2023.10.23 ·
581 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

多模态论文串讲

朱老师画的多模态近期脉络FLIP论文:CLIP基础上用了MAE思想,没mask的当作token,减少序列长度,值得看MetaLM PaLi做什么由prompt决定,调整prompt决定任务调整输出其他:Unified IO Uniperceiver1,2,uniperceiverMOE。
原创
发布博客 2023.10.17 ·
689 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

CLIP和改进工作

CLIP 改进方向语义分割Lseg、GroupViT目标检测ViLD、GLIP v1/v2视频理解VideoCLIP、CLIP4clip、ActionCLIP图像生成VQGAN-CLIP、CLIPasso、CLIP-Draw多模态下游任务VL Downstream其他prompt enginering(CoOp等)depthCLIP、pointCLIP(点云)、audioCLIP(音频)数据集4个亿论文标题中有一个重要的点——自然语言监督。这说明 CLIP 是涉及文字和图片的多模态领
原创
发布博客 2023.10.16 ·
1259 阅读 ·
2 点赞 ·
0 评论 ·
19 收藏

DINO(ICLR 2023)

DINO发展:Conditional DETR->DAB-DETR(4D,WH修正)DN-DETR(去噪训练,deNoising 稳定匹配过程)Deformable DETR(变体1:two-stage,encoder输出经过FFN分类头替换object query,变体2:box迭代细化)论证了DETR类在大数据集上的可扩展性,使用大backbone大dataset和SOTA比较。
原创
发布博客 2023.09.24 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

DN-DETR(CVPR 2022)

导致了同一个图像,query在不同时期会对不同对象进行匹配DN-DETR在真实的GT上添加噪声:xywh,label。
原创
发布博客 2023.09.24 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

DAB-DETR

贡献:明确了不是由于learnable queries导致的收敛缓慢4D anchor。
原创
发布博客 2023.09.23 ·
266 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Anchor DETR

在以前DETR中,目标的查询是一组可学习的embedding。然而,(因为是随机初始化的),所以也不能解释它最终将集中在哪里。此外,由于每个,所以DETR中对可视化的注释:( slots就是100个查询中的一个 )这里三种预测pattern可能相同也可能不同。
原创
发布博客 2023.09.22 ·
724 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Conditional DETR(ICCV 21)

加速detr收敛(50 epoch收敛)
原创
发布博客 2023.09.21 ·
411 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI计算病理学(wsi,因果)

双向若监督知识蒸馏WSI分类。
原创
发布博客 2023.09.21 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deformable DETR(2020 ICLR)

detr训练epochs缩小十倍,小目标性能更好。
原创
发布博客 2023.09.21 ·
313 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

对比学习综述

代理任务:Instance Discrimination, predictive, multi-view, multi-modal目标函数:NCE, InfoNCE, 和其他变体一个 encoder + memory bank (Inst Disc);一个 encoder (Invariant Spread);一个 encoder + 一个 auto regressive (CPC);多个 encoders (CMC)任务类型:图像,音频,文字,强化学习等。
原创
发布博客 2023.07.15 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多