目录
2.1 贝叶斯优化(Bayesian Optimization)
前言
在机器学习项目中,超参数优化是提升模型性能的关键步骤之一。超参数(如学习率、正则化系数、树的数量等)的选择对模型的性能有重要影响。通过合理调整超参数,可以显著提高模型的准确性和泛化能力。本文将从超参数优化的基本概念出发,介绍高级的超参数优化方法,并通过一个完整的代码示例带你入门,同时探讨其应用场景和注意事项。
目录
2.1 贝叶斯优化(Bayesian Optimization)
在机器学习项目中,超参数优化是提升模型性能的关键步骤之一。超参数(如学习率、正则化系数、树的数量等)的选择对模型的性能有重要影响。通过合理调整超参数,可以显著提高模型的准确性和泛化能力。本文将从超参数优化的基本概念出发,介绍高级的超参数优化方法,并通过一个完整的代码示例带你入门,同时探讨其应用场景和注意事项。