计算机视觉
文章平均质量分 58
计算机视觉
great-wind
好记性不如烂笔头
展开
-
PIL图片与OpenCV图片的相互转换
PIL图片与OpenCV图片的相互转换是通过数组格式转换的。通过type()函数,我们可以观察到通过cv2.imread()函数得到的图片格式为numpy.ndarray;通过Image.open()函数得到的图片格式为PIL.JpegImagePlugin.JpegImageFile,而在Image中存在通过数组格式加载图像的方法Image.fromarray。因此,以数组格式作为中间者可实现PIL图片与OpenCV图片之间的相互转换,代码如下:import cv2import numpy as np原创 2021-11-16 11:15:28 · 6274 阅读 · 0 评论 -
PaddleOCR使用笔记之模型训练
简介PaddleOCR算法主要包含三个部分,分别是文本检测模型(detection)、文本识别模型(recognition)、方向分类器(classification)。文本检测模型(detection)模型介绍PaddleOCR开源的文本检测算法列表: DB(paper) [2](ppocr推荐) EAST(paper)[1] SAST(paper)[4]在ICDAR2015文本检测公开数据集上,算法效果如下:模型骨干网络precisionrecallHmean原创 2021-09-28 11:49:19 · 8455 阅读 · 3 评论 -
PaddleOCR文本检测数据向文本识别数据的格式转换
在使用PaddleOCR官方提供的转换工具时出现问题,经过查看数据格式发现以下问题:文本检测的训练数据,可以在同一张图片上进行多个文本标注,最后形成的数据格式如下:" 图像文件名 json.dumps编码的图像标注信息"ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]原创 2021-09-27 15:07:08 · 1158 阅读 · 0 评论 -
Windows安装face_recognition
前言新版本的dlib不再需要Boost,因此您可以跳过它。请记住,您仍然需要满足以下要求。要求我已经在Windows10上安装了这些工具并使用了本教程,但是更新的版本可能也适用。安装带有C/C++编译器的Microsoft Visual Studio 2015(或更高版本) 。(Visual C++ 2015的构建工具对我来说不起作用,我在编译DLIB时遇到了问题)Python3(我用的是Python3.5 x64,但是其他版本也可以)CMake for windows,并将其添加到系统环境变翻译 2021-05-11 11:29:36 · 342 阅读 · 0 评论 -
Windows下安装dlib
Windows系统下安装dlib需要安装两个依赖软件Cmakeboost第一步,安装Cmake第二步,安装boost第三步,安装dlib原创 2021-05-11 09:48:23 · 3529 阅读 · 3 评论 -
OpenCV图片压缩保存
使用OpenCV对图像进行保存,要用到imwrite函数cv2.imwriteimport cv2cv2.imwrite(filename, img[, params])参数介绍filename:要保存的目标文件名,需要带上后缀。img:Mat 类型图像数据。params:表示为特定格式保存的参数编码,默认不用填。对于 JPEG 格式图片,这个参数表示从 0 到 100 的图片质量(CV_IMWRITE_JPEG_QUALITY),默认值是 95.对于 PNG 格式图片,表示压缩级别原创 2021-03-12 17:33:25 · 1822 阅读 · 0 评论 -
OpenCV键盘监听函数
waitKeycv2.waitKey([, delay]) 该函数主要作用是如果过了delay毫秒,仍然没等到有按键事件发生, 就继续执行下面的函数, 类似于延时(delay)效果。返回的数值是按下的按键字符,对应的 ASCII 编码。参数介绍delay:等待时间(毫秒)示例通过该函数实现按下键盘任意键退出函数的功能,以q键为例:import cv2# 创建一个名为image的窗口cv2.namedWindow('image')while True: # 等待按键事件发生原创 2021-03-12 18:00:17 · 1696 阅读 · 0 评论 -
数字图像处理一之初识
初识引言什么是数字图像处理使用数字图像处理领域的实例数字图像处理的基本步骤图像处理系统的组成引言数字图像处理方法的重要性源于两个主要应用领域:改善图示信息以便人们解释;为存储、传输和表示而对图像进行处理,便于机器自动理解。什么是数字图像处理一幅图像可定义为一个二维函数f(x,y)f(x,y)f(x,y),其中xxx和yyy是空间(平面)坐标,而在任何一对空间坐标(x,y)(x,y)(x,y)处的幅值aaa 称为图像在该点的强度或灰度。当x,yx,yx,y和灰度值aaa是有限的离散值时,我们称原创 2021-03-08 22:42:11 · 244 阅读 · 0 评论