题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024
题意:给出n长度的序列,要求找出m对子序列,使得m对子序列和最大
思路:dp[i][j]前边j个数分成i对子序列的最大和,且s[j]为最后一个子序列末,dp[i][j]=max(dp[i][j-1]+s[j],dp[i-1][k]+s[j]),其中i-1<= k <=j-1。状态转移可以理解为:s[j]要加入子序列中要么独自成为一个序列(就是dp[i-1][k]+s[j]),要么与s[j-1]组合成一个新的序列(就是dp[i-1][k]+s[j])。
因为空间和时间的限制,需要进行一定的优化,用滚动数组的方式就可以优化空间,时间优化则通过数组记录下
dp[i-1][k]的最大值便可以,pre[j-1]数组的更新要在计算完dp[i][j]才可以,因为dp[i][j]需要用到未更新的pre[j-1](更新后就是类似dp[i-1][k]最大值 -> dp[i][k]的最大值),用pre[n]一直保存最大值就可以
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define inf 0x3f3f3f3f
#define maxn 1000030
using namespace std;
int s[maxn],pre[maxn],dp[maxn];
int main()
{
int n,m;
while (scanf("%d%d",&m,&n)!=EOF)
{
memset(pre,0,sizeof(pre));
memset(dp,0,sizeof(dp));
for (int i=1;i<=n;i++)
scanf("%d",&s[i]);
dp[0]=0;
pre[0]=0;
for (int i=1;i<=m;i++)
{
int tmp=-inf;
for (int j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+s[j],pre[j-1]+s[j]);
pre[j-1]=tmp;
tmp=max(tmp,dp[j]);
}
pre[n]=tmp;
}
printf("%d\n",pre[n]);
}
}