HDU 1024 Max Sum Plus Plus (最大子序和)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024


题意:给出n长度的序列,要求找出m对子序列,使得m对子序列和最大


思路:dp[i][j]前边j个数分成i对子序列的最大和,且s[j]为最后一个子序列末,dp[i][j]=max(dp[i][j-1]+s[j],dp[i-1][k]+s[j]),其中i-1<= k <=j-1。状态转移可以理解为:s[j]要加入子序列中要么独自成为一个序列(就是dp[i-1][k]+s[j]),要么与s[j-1]组合成一个新的序列(就是dp[i-1][k]+s[j])。

       因为空间和时间的限制,需要进行一定的优化,用滚动数组的方式就可以优化空间,时间优化则通过数组记录下

dp[i-1][k]的最大值便可以,pre[j-1]数组的更新要在计算完dp[i][j]才可以,因为dp[i][j]需要用到未更新的pre[j-1](更新后就是类似dp[i-1][k]最大值  ->  dp[i][k]的最大值),用pre[n]一直保存最大值就可以




      

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define inf 0x3f3f3f3f
#define maxn 1000030
using namespace std;

int s[maxn],pre[maxn],dp[maxn];

int main()
{
    int n,m;
    while (scanf("%d%d",&m,&n)!=EOF)
    {

        memset(pre,0,sizeof(pre));
        memset(dp,0,sizeof(dp));
        for (int i=1;i<=n;i++)
          scanf("%d",&s[i]);

        dp[0]=0;
        pre[0]=0;
        for (int i=1;i<=m;i++)
        {
            int tmp=-inf;
            for (int j=i;j<=n;j++)
            {

                dp[j]=max(dp[j-1]+s[j],pre[j-1]+s[j]);
                pre[j-1]=tmp;
                tmp=max(tmp,dp[j]);
            }
            pre[n]=tmp;
        }
        printf("%d\n",pre[n]);
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值