构建鸢尾花决策树模型

本文介绍了使用Iris鸢尾花数据集构建决策树模型的过程,包括数据预处理、模型优化、验证和决策树结构分析。通过Scikit-learn库进行模型训练,并展示了参数调整后模型精度的提升。决策树结构显示,'petal_length'和'petal_width'是关键特征,对类别区分起决定作用。
摘要由CSDN通过智能技术生成

构建鸢尾花决策树模型


阅读这篇文章之前你需要对决策树有所了解,并具有一定的python基础,文中并未阐述原理,只是演示构建模型的步骤。

完整代码极其数据集

预处理数据

我选用了一个经典数据集来展示如何构建一个决策树模型,这个数据集是——Iris 鸢尾花数据集。

运行上面代码我们可以得到图1:

图1
鸢尾花数据集是个既简单又成熟的数据集,没有必要处理,但是我们发现图中画出的一个点并不是那么合群,我们处理掉它。

然后我们获得两张图片,如图2和图3所示。
图2

图3
在图3的橙色中是处理后的数据,这样就没有异常的数据了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值