卷积神经网络(CNN)
1 卷积神经网络可以用来做什么
卷积神经网络的核心思想是捕捉局部特征,起初在图像领域取得了巨大成功,后来在文本领域也得到了广泛的应用。
2 传统神经网络和卷积神经网络的区别
左图:传统神经网络
右图:卷积神经网络
在传统神经网络中输入层常为一维,在CNN中输入层为3维,即原始图片
3 卷积神经网络的架构
3.1 输入层
在卷积神经网络中输入层常为多通道的色彩原始图片。
3.2 卷积层
根据事先设定的
W
0
W_0
W0,
W
1
W_1
W1的参数,使用内积计算
W
x
+
b
Wx+b
Wx+b 获取值
其中
W
0
W_0
W0,
W
1
W_1
W1的参数设定均为经过反向传播,最终设定的
3.3 池化层
池化层的作用简而言之就是压缩卷积层的数据,利用最大池化
3.4 全连接层
全连接层在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。