卷积神经网络(CNN)

卷积神经网络(CNN)

1 卷积神经网络可以用来做什么

卷积神经网络的核心思想是捕捉局部特征,起初在图像领域取得了巨大成功,后来在文本领域也得到了广泛的应用。

2 传统神经网络和卷积神经网络的区别

在这里插入图片描述
左图:传统神经网络
右图:卷积神经网络
在传统神经网络中输入层常为一维,在CNN中输入层为3维,即原始图片

3 卷积神经网络的架构

在这里插入图片描述

3.1 输入层

在卷积神经网络中输入层常为多通道的色彩原始图片。

3.2 卷积层

在这里插入图片描述
根据事先设定的 W 0 W_0 W0 W 1 W_1 W1的参数,使用内积计算 W x + b Wx+b Wx+b 获取值
其中 W 0 W_0 W0 W 1 W_1 W1的参数设定均为经过反向传播,最终设定的

3.3 池化层

在这里插入图片描述
池化层的作用简而言之就是压缩卷积层的数据,利用最大池化

3.4 全连接层

全连接层在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laccoliths

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值