本评测仅供娱乐
评测软件:katago-v1.15.3。
https://github.com/lightvector/KataGo
测试命令:
katago benchmark -model kata1-b18c384nbt-s9996604416-d4316597426.bin.gz
对比
数值表明每秒对局面进行的神经网络评估次数,越高越好:
硬件 | 分类1 | 分类2 | nnEvals/s | 备注 |
---|---|---|---|---|
AMD R5 3600 | CPU | Eigen | 9.88 | |
AMD R5 3600 | CPU | Eigen(AVX2) | 13.9 | |
AMD R5 5500U | 核显(vega6 / vega7) | OpenCL | 38.32 | |
AMD RX 5700 | 单张A卡 | OpenCL | 263.77 | |
E5-2680 v3 + NVIDIA RTX 4060Ti | 单张N卡 | OpenCL | 794.14 | |
E5-2680 v3 + NVIDIA RTX 4060Ti | 单张N卡 | CUDA + TensorRT | 2246.69 | -t 48 |
EPYC 7K62 + NVIDIA RTX 4070TiSuper | 单张N卡 | CUDA + TensorRT | 4159.07 | -t 80 |
NVIDIA RTX 4090 | 单张N卡 | OpenCL | 2204.00 | |
NVIDIA RTX 4090 | 单张N卡 | CUDA | 4069.00 | |
NVIDIA RTX 4090 | 单张N卡 | CUDA + TensorRT | 5369.00 | |
INTEL + NVIDIA RTX 4090 * 8 | 多显卡 | CUDA + TensorRT | 40000.00 | |
AMD EPYC 9654P + NVIDIA RTX 4090 * 8 | 多显卡 | CUDA + TensorRT | 48187.97 |
CUDA=12.5
TensorRT=10.2.0