在SpringBoot中使用RedisTemplate重新消费Redis Stream中未ACK的消息

本文介绍了在SpringBoot应用中如何处理Redis Stream中未确认(ACK)的消息。通过RedisTemplate,详细展示了如何获取待确认消息、遍历消费者pending列表进行ACK、通过XCLAIM转移消息消费者以及处理死信的方法,旨在解决消费者未及时ACK导致的消息重复消费问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

消费组从stream中获取到消息后,会分配给自己组中其中的一个消费者进行消费,消费者消费完毕,需要给消费组返回ACK,表示这条消息已经消费完毕了。

当消费者从消费组获取到消息的时候,会先把消息添加到自己的pending消息列表,当消费者给消费组返回ACK的时候,就会把这条消息从pending队列删除。(每个消费者都有自己的pending消息队列)

消费者可能没有及时的返回ACK。例如消费者消费完毕后,宕机,没有及时返回ACK,此时就会导致这条消息占用2倍的内存(stream中保存一份, 消费者的的pending消息列表中保存一份)

关于Stream的基础姿势,可以先看看这篇贴帖子
如何在Springboot中使用Redis5的Stream

开始之前,通过Redis客户端模拟一点数据

1,新打开Redis客户端(我们称之为:生产端), 创建streamm,名称叫做:my_stream

XADD my_stream * hello world

随便添加一条消息,目的是为了初始化stream

2,创建一个消费组,名称叫做:my_group

XGROUP CREATE my_stream my_group $

3,再新启动一个Redis客户端(我们称之为:消费端1),使用消费组进行阻塞消费,指定消费者:my_consumer1

XREADGROUP GROUP my_group  my_consumer1  BLOCK 0 STREAMS my_stream >

4,再新启动一个Redis客户端(我们称之为:消费端2),使用消费组进行阻塞消费,指定消费者:my_consumer2

XREADGROUP GROUP my_group  my_consumer2  BLOCK 0 STREAMS my_stream >

5,通过生产端,推送3条消息

XADD my_stream * message1 Hello
XADD my_stream * message2 SpringBoot
XADD my_stream * message3 Community
生产端

消费端1

消费端2

可以看到,一共Push了3条消息,它们的ID分别是

  • 1605524648266-0 (message1 )
  • 1605524657157-0 (message2)
  • 1605524665215-0 (message3)

现在的状况是,消费者1,消费了2条消息(message1和message3),消费者2,消费了1条消息(message2)。都是消费成功了的,但是它们都还没有进行ACK

在客户端,消费者消费到一条消息后会立即返回,需要重新执行命令,来回到阻塞状态

ACK消息

现在我们打算,把消费者1,消费的那条message1进行ACK

XACK my_stream my_group  1605524648266-0

获取指定消费组中,待确认(ACK)的消息

查看消费组的所有待确认消息统计

127.0.0.1:6379> XPENDING my_stream  my_group
1) (integer) 2       # 消费组中,所有消费者的pending消息数量
2) "1605524657157-0" # pending消息中的,最小消息ID
3) "1605524665215-0" # pending消息中的,最大消息ID
4) 1) 1) "my_consumer1"  # 消费者1
      2) "1"             # 有1条待确认消息
   2) 1) "my_consumer2"  # 消费者2
      2) "1"             # 有2条待确认消息

查看消费者1的待确认消息详情

127.0.0.1:6379> XPENDING my_stream  my_group 0 + 10 my_consumer1
1) 1) "1605524665215-0"  # 待ACK消息ID
   2) "my_consumer1"     # 所属消费者
   3) (integer) 847437   # 消息自从被消费者获取后到现在过去的时间(毫秒) - idle time
   4) (integer) 1        # 消息被获取的次数	- delivery counter

这条命令,表示查询消费组my_group中消费者my_consumer1的opending队列,开始ID是0,结束ID是最大,最多检索10个结果。

现在的情况就是,一共3条消息,消费者1消费了2条,ack了1条。消费者2消费了1条,没有ack。消费者1和2,各自的pending队列中都有一条未ack的消息

如何实现将未被成功消费的消息获取出来重新进行消费?之前的演示,目的都是为了造一些数据,所以是用的客户端命令,从这里开始,所有的演示,都会使用spring-data-redis中的RedisTemplate

遍历消费者的pending列表,读取到未ACK的消息,直接进行ACK

import java.time.Duration;
import java.util.List;
import java.util.Map;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.data.domain.Range;
import org.springframework.data.redis.connection.stream.Consumer;
import org.springframework.data.redis.connection.stream.MapRecord;
import org.springframework.data.redis.connection.stream.PendingMessages;
import org.springframework.data.redis.connection.stream.PendingMessagesSummary;
import org.springframework.data.redis.connection.stream.RecordId;
import org.springframework.data.redis.core.StreamOperations;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;

import io.springboot.jwt.SpringBootJwtApplication;

@RunWith(SpringRunner.class)
@SpringBootTest(classes = SpringBootJwtApplication.
<think>嗯,用户想了解在Spring Boot中使用Redis Stream实现消息队列的示例教程。首先,我需要回忆一下Redis Stream的相关知识,以及如何在Spring Boot中集成它。记得Redis StreamRedis 5.0引入的数据结构,支持消息持久化和消费者组,适合作为消息队列使用。 首先,用户可能需要先配置环境,比如添加依赖。根据引用[3],需要引入Spring Boot的Redis starter依赖。所以应该先检查pom.xml中的依赖是否正确,比如spring-boot-starter-data-redis。 然后配置Redis连接信息,比如在application.yml中设置host和port。接下来,创建RedisTemplate或者StringRedisTemplate的Bean,不过可能Spring Boot已经自动配置了,但用户可能需要自定义配置,比如设置序列化方式。 接下来是具体的代码实现。生产者部分,需要使用XADD命令来添加消息Stream中。在Spring Data Redis中,可能通过redisTemplate.opsForStream().add()方法来实现。需要指定Stream的key、消息体的字段和值。 消费者部分比较复杂,因为涉及到消费者组的创建和消息的读取。根据引用[4],可以手动创建消费者组,或者在代码中调用createGroup方法。可能需要使用StreamMessageListenerContainer来监听消息,并处理接收到的消息。 需要注意的地方包括消费者组的初始化,确保在应用启动时创建消费者组,避免重复创建导致的错误。另外,消息确认机制也很重要,处理完消息后需要调用acknowledge方法进行确认,防止消息被重复消费。 示例代码可能需要分为配置类、生产者服务类、消费者配置类以及测试部分。在配置类中设置Redis连接和模板;生产者服务提供发送消息的方法;消费者配置类里设置监听容器,并定义消息处理的逻辑。 用户可能还会关心如何测试整个流程,比如发送消息后如何验证消费者是否接收到。可能需要编写一个Controller来触发消息发送,并通过日志查看消费者的处理情况。 另外,根据引用[3]和引用[4],使用Redis Stream相比List和发布/订阅模型的优势在于持久化和消费者组支持,适合需要可靠消息传递的场景。不过也要提醒用户,Redis作为消息队列在消息量大的情况下可能不如专业的消息中间件,需要根据实际需求选择。 最后,需要确保示例中的代码符合最佳实践,比如异常处理、资源清理等。同时,检查LaTeX格式是否正确,行内公式用$...$,独立公式用$$...$$,并生成相关问题供用户进一步学习。</think>### Spring Boot + Redis Stream 消息队列实现步骤 #### 一、环境准备 1. 添加依赖(需与引用[3]保持一致): ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> ``` 2. 配置`application.yml`: ```yaml spring: redis: host: 127.0.0.1 port: 6379 password: stream: key: redis-stream-01 # 自定义Stream名称 ``` #### 二、核心代码实现 1. **生产者服务**: ```java @Service public class StreamProducer { @Autowired private StringRedisTemplate redisTemplate; public void sendMessage(Map<String, String> message) { // 使用Spring Data RedisStream操作API RecordId recordId = redisTemplate.opsForStream() .add(StreamRecords.newRecord() .ofStrings(message) .withStreamKey("redis-stream-01")); System.out.println("消息ID:" + recordId); } } ``` 2. **消费者组初始化**(引用[4]实现方式): ```java @Configuration public class RedisConfig { @Autowired private RedisConnectionFactory redisConnectionFactory; @Bean public StreamMessageListenerContainer<String, ObjectRecord<String, String>> listenerContainer() { // 创建消费者组(需确保只初始化一次) RedisTemplate<String, String> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(redisConnectionFactory); redisTemplate.afterPropertiesSet(); redisTemplate.opsForStream().createGroup("redis-stream-01", "group-a"); // 配置监听容器 StreamMessageListenerContainer.StreamMessageListenerContainerOptions<String, ObjectRecord<String, String>> options = StreamMessageListenerContainer.StreamMessageListenerContainerOptions .builder() .pollTimeout(Duration.ofSeconds(1)) .build(); return StreamMessageListenerContainer.create(redisConnectionFactory, options); } } ``` 3. **消息监听处理器**: ```java @Component public class StreamConsumer implements ApplicationRunner { @Autowired private StreamMessageListenerContainer<String, ObjectRecord<String, String>> listenerContainer; @Override public void run(ApplicationArguments args) { listenerContainer.receive(Consumer.from("group-a", "consumer-1"), StreamOffset.create("redis-stream-01", ReadOffset.lastConsumed()), message -> { // 处理消息逻辑 System.out.println("收到消息:" + message.getValue()); // 消息确认(ACK) listenerContainer.getContainerOptions().getStreamOperations() .acknowledge("redis-stream-01", "group-a", message.getId()); }); listenerContainer.start(); } } ``` #### 三、测试验证 1. 发送测试消息: ```java @RestController public class TestController { @Autowired private StreamProducer producer; @GetMapping("/send") public String sendMsg() { Map<String, String> msg = new HashMap<>(); msg.put("orderId", "1001"); msg.put("amount", "299.00"); producer.sendMessage(msg); return "消息已发送"; } } ``` 2. 通过Redis-cli查看消息: ```shell XREAD COUNT 10 STREAMS redis-stream-01 0 ``` #### 四、关键特性说明 1. **消息持久化**:Redis Stream使用$radix$树结构存储消息,所有消息永久保存[^3] 2. **消费组特性**: - 支持多个独立消费者组 - 通过`XACK`实现消息确认 - 消息消费进度通过$last_delivered_id$维护[^4] 3. **性能指标**:单节点吞吐量可达$10^4$级别QPS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值