HttpClient使用管道流提交Multipart请求

本文介绍了如何利用Java HttpClient与管道流处理大体积的Multipart请求。当Multipart请求体过大时,可以将数据写入磁盘或者利用管道流避免内存不足的问题。在HttpClient中,虽然没有内置的Multipart请求体构建API,但可以借助httpmime库来构造。同时,文章提供了一个完整的客户端和服务端Demo,展示如何实际操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HttpClient 是JDK11提供的一个全新HTTP客户端Api,超级好用。

Multipart 请求

HttpClient 并没有提供 Multipart 请求体的构建Api。但是可以使用apache的开源httpmime库来进行构建。

<!-- https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime -->
<dependency>
    <groupId>org.apache.httpcomponents</groupId>
    <artifactId>httpmime</artifactId>
    <version>4.5.13</version>
</dependency>

构建一个 MultipartBody

// 构建Multipart请求
HttpEntity httpEntity = MultipartEntityBuilder.create()
		// 表单数据
		.addPart("name", new StringBody(UriUtils.encode("SpringBoot中文社区", StandardCharsets.UTF_8), ContentType.APPLICATION_FORM_URLENCODED))
		// JSON数据
		.addPart("info", new StringBody("{\"site\": \"https://springboot.io\", \"now\": 2021}", ContentType.APPLICATION_JSON))
		// 文件数据
		.addBinaryBody("file", file, ContentType.APPLICATION_OCTET_STREAM, "eclipse-jee-2019-12-R-win32-x86_64.zip")
		.build();

ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream((int) httpEntity.getContentLength());

// 把body写入到内存
httpEntity.writeTo(byteArrayOutputStream);

Multipart 请求可以一次性post多个子body,通常用来上传本地磁盘上的文件。所以这种请求体可能会异常庞大。甚至内存不能完整的存入整个请求体。那么这个时候有2种办法可以解决。

  1. 先把构建好的Body数据写入到磁盘,再通过IO磁盘数据,提交给服务器
  2. 使用管道流,在读取磁盘数据进行body构建的时候,直接通过管道提交到远程服务器

管道流

管道流,顾名思义,可以往一边写,从另一边读。

// 创建读取流
PipedInputStream pipedInputStream = new PipedInputStream();
// 创建写入流
PipedOutputStream pipedOutputStream = new PipedOutputStream();
<think>好的,我现在需要帮助用户在ASP.NET中集成Ollama和DeepSeek模型,实现对话功能,并支持历史记录管理、文件上传以及保持对话的连贯性。首先,我需要明确用户的需求,了解各个组件的集成方式,并考虑如何将这些功能结合起来。 首先,Ollama和DeepSeek模型都是AI模型,可能需要通过API调用。用户提到的是在ASP.NET环境下集成,所以可能需要使用C#进行开发。我需要参考已有的引用内容,看看有没有相关的示例或方法可以借鉴。 根据引用[1],提到了在.NET应用程序中调用DeepSeek API的方法,使用了Microsoft.Extensions.AI库。这可能是一个关键点,需要了解如何配置和使用这个库来处理模型的管理和推理。而引用[5]中的代码片段展示了如何遍历模型列表、选择模型并进行聊天交互,这可能与Ollama的集成有关,因为代码中提到了ollama.SelectedModel和Chat类的使用。 接下来,用户需要实现对话交互,包括历史记录的保存、新建对话、文件上传和分析,以及保持连贯的对话。我需要考虑以下几个方面: 1. **模型集成**:如何同时集成Ollama和DeepSeek模型,可能需要分别调用它们的API。例如,DeepSeek的API调用可以参考引用[1],而Ollama可能使用类似引用[5]中的本地模型调用方式。 2. **对话管理**:需要设计一个数据结构来保存历史对话记录,可能每个对话会话(Session)有一个唯一的ID,记录用户和AI的交互消息。历史记录的存储可以使用数据库或者内存缓存,但考虑到持久化,数据库更可靠。 3. **文件上传与分析**:用户上传的文件需要被处理,可能涉及到文件存储、解析(如文本提取、数据分析等),然后将分析结果作为对话上下文的一部分传递给模型。这部分可能需要结合ASP.NET的文件上传功能,如引用[2]中提到的前后端交互方式,比如通过表单提交或Ajax上传文件。 4. **连贯对话**:确保每次对话请求都包含之前的上下文,这样模型能理解之前的交。这需要在每次API调用时,将历史记录作为参数传递,或者在后端维护当前的会话状态。 接下来,具体步骤可能包括: - **配置模型API**:在ASP.NET项目中配置DeepSeek和Ollama的API端点、密钥等信息。对于DeepSeek,可能需要使用HttpClient发送请求,处理响应。对于Ollama,如果是在本地运行,可能需要调用本地服务的API端口,如引用[5]中的代码所示。 - **创建对话服务类**:设计一个服务类,处理消息的发送、接收,管理历史记录。例如,每次用户发送消息时,服务类将消息添加到历史记录,调用相应的模型API,获取响应后也添加到历史记录中,并返回给前端。 - **实现文件上传**:在ASP.NET中,可以使用HttpPostedFileBase接收上传的文件,保存到服务器,解析内容(如读取文本文件内容,或处理其他格式),然后将解析后的文本作为上下文传递给模型。例如,用户上传PDF文件,后端提取文本后,在对话中提及该内容。 - **会话管理**:使用会话ID来区分不同的对话。当用户新建对话时,生成新的会话ID,并清空历史记录。可以使用数据库表来存储每个会话的历史记录,包括用户ID、会话ID、消息内容、时间戳等字段。 - **保持连贯性**:每次请求时,将会话的历史记录作为上下文传入模型。例如,DeepSeek的API可能允许在请求体中发送消息数组,包含之前的对话内容。需要确保每次API调用都包含完整的上下文,以便模型生成连贯的回复。 在技术实现上,可能会遇到一些问题,比如: - **API调用的异步处理**:ASP.NET需要异步处理模型API的调用,避免阻塞线程。使用async/await模式,确保高并发下的性能。 - **大文件处理**:文件上传可能需要分块处理或限制文件大小,避免服务器资源耗尽。同时,文件解析需要高效,可能需要使用第三方库,如iTextSharp处理PDF,EPPlus处理Excel等。 - **历史记录存储效率**:如果对话历史很长,每次传输所有历史记录可能导致API响应变慢。可以考虑只保留最近N条消息,或者使用摘要的方式压缩历史信息。 关于引用内容,引用[2]提到了ASP.NET Web Forms中的前后端交互方式,虽然用户可能使用的是ASP.NET Core,但其中的Ajax和WebService方法仍然适用。例如,前端使用Axios(引用[4])发送异步请求到后端API,处理响应并更新页面,而不需要刷新整个页面。 引用[3]提到的HttpContext对象可能在处理请求时有用,尤其是在中间件中管理会话状态,或者在管道中传递请求和响应数据。 现在,需要将这些思路整合成一个结构化的回答,涵盖模型集成、对话管理、文件处理和连贯性实现的具体步骤,并参考已有的引用内容提供代码示例或方法建议。</think>在ASP.NET中集成Ollama与DeepSeek模型实现对话功能,需结合模型调用、会话管理、文件解析和上下文连贯性技术。以下是分步骤实现方案: --- ### 一、模型集成与API调用 #### 1. **DeepSeek模型集成** 通过`HttpClient`调用其API,需配置API密钥与终结点: ```csharp // 配置在appsettings.json "DeepSeek": { "ApiKey": "your-key", "Endpoint": "https://api.deepseek.com/v1/chat/completions" } // 服务类封装 public class DeepSeekService { private readonly HttpClient _client; public DeepSeekService(IConfiguration config) { _client = new HttpClient(); _client.DefaultRequestHeaders.Add("Authorization", $"Bearer {config["DeepSeek:ApiKey"]}"); } public async Task<string> SendMessageAsync(List<Message> history) { var request = new { model = "deepseek-r1", messages = history }; var response = await _client.PostAsJsonAsync(config["DeepSeek:Endpoint"], request); return await response.Content.ReadAsStringAsync(); } } ``` 引用[1]提到可通过`Microsoft.Extensions.AI`库优化模型管理,建议结合其内置方法处理请求重试和日志[^1]。 #### 2. **Ollama本地模型调用** 若使用本地部署的Ollama模型,调用其REST API: ```csharp public class OllamaService { public async Task<string> GenerateResponseAsync(string prompt, string modelName) { using var client = new HttpClient(); var request = new { model = modelName, prompt }; var response = await client.PostAsJsonAsync("http://localhost:11434/api/generate", request); return await response.Content.ReadAsStringAsync(); } } ``` 引用[5]展示了模型选择与对话初始化逻辑,可结合`ollama.SelectedModel`动态切换模型[^5]。 --- ### 二、对话会话管理 #### 1. **数据结构设计** ```csharp public class ChatSession { public string SessionId { get; set; } public List<Message> History { get; set; } = new(); public DateTime CreatedAt { get; set; } } public class Message { public string Role { get; set; } // "user" 或 "assistant" public string Content { get; set; } public List<FileAnalysis>? Attachments { get; set; } // 关联文件分析结果 } ``` #### 2. **持久化存储** 使用Entity Framework Core将会话存入数据库: ```csharp public class AppDbContext : DbContext { public DbSet<ChatSession> ChatSessions { get; set; } } // 会话服务 public class SessionService { private readonly AppDbContext _db; public SessionService(AppDbContext db) => _db = db; public async Task<ChatSession> CreateSessionAsync() { var session = new ChatSession { SessionId = Guid.NewGuid().ToString() }; _db.ChatSessions.Add(session); await _db.SaveChangesAsync(); return session; } } ``` --- ### 三、文件上传与解析 #### 1. **前端上传实现** 使用Ajax上传文件(结合引用[2]和[4]): ```javascript // 前端使用Axios const formData = new FormData(); formData.append("file", file); axios.post('/api/upload', formData, { headers: { 'Content-Type': 'multipart/form-data' } }); ``` #### 2. **后端处理** ```csharp [HttpPost("upload")] public async Task<IActionResult> Upload(IFormFile file) { var analysisResult = await _fileService.AnalyzeAsync(file); return Ok(analysisResult); } // 文件解析服务示例(以PDF为例) public class FileService { public async Task<FileAnalysis> AnalyzePdfAsync(Stream stream) { using var reader = new PdfReader(stream); var text = new StringBuilder(); for (int i = 1; i <= reader.NumberOfPages; i++) { text.Append(PdfTextExtractor.GetTextFromPage(reader, i)); } return new FileAnalysis { Content = text.ToString() }; } } ``` --- ### 四、连贯对话实现 #### 1. **上下文传递** 每次请求携带会话ID,后端根据ID加载历史记录: ```csharp [HttpPost("chat")] public async Task<IActionResult> Chat([FromBody] ChatRequest request) { var session = await _sessionService.GetSessionAsync(request.SessionId); session.History.Add(new Message { Role = "user", Content = request.Message }); var response = await _deepSeekService.SendMessageAsync(session.History); session.History.Add(new Message { Role = "assistant", Content = response }); await _db.SaveChangesAsync(); return Ok(response); } ``` #### 2. **历史记录优化** 为防止上下文过长,可截断或摘要: ```csharp // 保留最近10条消息 if (session.History.Count > 10) { session.History = session.History.TakeLast(10).ToList(); } ``` --- ### 五、前后端交互 使用ASP.NET Core WebAPI+Axios实现异步通信(引用[4]): ```javascript // 前端发送消息 axios.post('/api/chat', { sessionId: '123', message: 'Hello' }) .then(response => { // 更新对话历史 }); ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值