自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1872)
  • 收藏
  • 关注

原创 新手必看!我如何6步用(Coze)轻松搭建了一个AI智能体

AI智能体就像是一个虚拟的"小助手"。它能听懂你的话,理解你的需求,并帮你完成任务。想象一下,你有了一个24小时待命的私人助理,随时随地为你服务。这就是AI智能体的魅力所在。

2025-01-04 17:19:05 8564

原创 一图了解大模型是什么?附国内外知名大模型及240余家大模型清单!

引申到模型层面,涌现能力指的是当模型的训练数据突破一定规模,模型突然涌现出之前小模型所没有的、意料之外的、能够综合分析和解决更深层次问题的复杂能力和特性,展现出类似人类的思维和智能。简而言之,大模型是指利用海量数据,通过先进的算法和技术,训练得到的具有强大预测和决策能力的模型。它们利用大算力、使用海量的开放数据与具有巨量参数的深度学习算法,在大规模无标注数据上进行训练,以寻找特征并发现规律,进而形成可“举一反三”的强大泛化能力,可在不进行微调或少量微调的情况下完成多场景任务,相当于AI完成了“通识教育”。

2024-12-09 16:00:36 4096

原创 太强了!10大开源大模型!

近期,Meta 隆重推出了两款开源模型:Llama 3 8B与Llama 3 70B,这两款模型可供外部开发者免费使用。Meta 表示,Llama 3 8B和Llama 3 70B在目前同体量模型中,展现出卓越的性能,堪称业界的佼佼者。从Meta 分享的基准测试结果来看,Llama 3 400B+ 的实力不容小觑,其性能已逼近Claude超大杯以及新版GPT-4 Turbo,虽然还存在一定的差距,但足以证明它在顶尖大模型领域已占有一席之地。

2024-11-23 11:20:38 5128

原创 “农业+大模型”的八大应用场景及成功案例

当前处于一个农业生产力提升与城镇化融合发展的一个关键时期,此前受耕作主体分散和生产水平的影响,我们的农业在解决了温饱水平之后,长时期处于碎片化作业与集约化程度不足的状态。随着近年智慧化应用积累和大模型的快速发展,“农业+大模型”的结合发展成为一种新的产业形态,也需要从体制到从业主体各个层面的改革以适应科技生产力的发展。农业与大模型的结合是新质生产力的体现,大模型在农业中的应用正是通过引入先进的人工智能技术,提升农业生产的智能化、精准化水平,从而创造新的价值和效率。丨。

2024-11-07 16:39:52 5337

原创 什么是LLM?看这一篇就够了!

自从2022年12月 ChatGPT 横空面世以来,AI 领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮 AI 热潮相比于之前的 AI,最大的区别在于:生成式。本文主要介绍大语言模型(Large Language Model,简称LLM)。通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。

2024-08-20 20:44:43 3278

原创 无需本地部署!免费使用开源大模型API

之前,我给大家分享过几篇关于如何在本地部署开源大模型以及应用场景的文章。比如说,给本地大模型添加知识库、API的调用等等。在这个过程中,有粉丝反馈自己不会部署,或者电脑配置不好,想知道还有没有办法使用这些开源大模型。今天就来分享一个免费且无门槛使用各种主流开源模型及其API的方法,让你不用在本地部署开源模型,也可以在各种第三方应用中调用这些模型,例如翻译插件、Dify的工作流、对话应用等等。这些场景下都可以用这个方法来省钱。我们今天要用的平台名字叫Groq。

2024-07-10 09:53:46 4389 1

原创 7年前端老鸟的崩溃时刻:AI一天写完我一周的代码,收藏这篇焦虑自救指南

7年前端开发者亲历AI震撼:从代码生成到职业危机 一位拥有7年经验的前端开发者分享了使用AI工具完成项目的经历,仅通过与AI对话就实现了完整小程序开发,引发深度职业焦虑。文章揭示了AI技术对编程领域的快速渗透:从代码补全到完整项目生成,传统开发技能正面临贬值风险。作者尝试通过跳槽国企、技术博客等方式应对,但AI的进化速度仍让人感到无力追赶。文章直指程序员的核心焦虑:在AI时代,多年经验积累的价值究竟何在?这不仅是个人职业困惑,更是整个技术行业需要思考的转型命题——如何重新定义人类开发者在智能时代的独特价值。

2026-01-14 19:15:26 824

原创 计算机就业真相:AI岗位暴涨39.62%,传统开发降温!程序员必看,收藏这篇转型指南

2024-2025年计算机就业呈现"冷热分化"现象:AI相关岗位需求暴增(机器学习工程师涨39.62%),传统开发岗位需求下降。AI不是替代程序员,而是筛选工具,淘汰只会写重复代码的人,留下会用AI提效的人。未来"AI+技术"复合岗、垂直领域技术岗和技术+产品岗将更吃香。计算机行业依然高薪,但高薪属于"会用AI的人",从业者应积极学习AI技能以适应时代变化。

2026-01-14 19:14:36 369

原创 从焦虑到逆袭:30岁前端开发者的全栈+AI转型实战,干货路线图建议收藏

30岁前端开发者的AI转型之路:一位从业7年的前端开发者面对AI冲击的职业焦虑,决心转型为"全栈+AI独立开发者"。文章详细规划了三阶段学习路线:首先突破前端舒适区学习Next.js+Supabase,然后掌握Python+FastAPI拥抱AI技术,最后通过DevOps和运营实现产品变现。作者坦言30岁重新学习新技术的压力,但视此为职业生涯的最后机会,希望通过转型开辟职业新道路,摆脱纯前端开发者面临的职业瓶颈。文章既是个人的转型宣言,也为面临类似困境的技术人员提供了可参考的行动方案。

2026-01-14 19:13:44 558

原创 Java程序员必看!收藏这篇,AI大模型时代如何突破35岁危机实现自我救赎

Java程序员在AI时代面临技术更新、竞争加剧和年龄焦虑等挑战。本文提出AI并非威胁而是赋能工具,建议程序员转型为"AI+Java"复合型人才。学习路径包括掌握Python和AI工具,通过实践积累经验,从开发者向架构师转型。文章强调持续学习的重要性,指出未来程序员应成为技术创新的引领者,并提供了大模型学习资源包,涵盖路线图、书籍、视频教程等内容,帮助程序员把握AI时代的职业机遇。

2026-01-14 19:12:43 309

原创 AgeMem让AI自主管理记忆,性能提升49.59%,超越现有方法8.5%,技术干货必收藏

阿里巴巴与武汉大学团队提出革命性记忆管理系统AgeMem,通过"工具调用"方式让AI自主管理记忆。该系统将记忆操作转化为可调用工具,使AI能动态决定信息存储与遗忘。采用三阶段强化学习策略,在多个基准测试中性能提升近50%,显著优于现有方法。AgeMem突破了传统记忆管理的被动模式,为突破大模型上下文限制和实现通用人工智能提供了新思路。

2026-01-14 19:11:58 242

原创 收藏!AI工程师入门不迷茫:从0到1的10阶段成长路线图

你是不是也有这种困惑:AI风口正劲,想转型入局却找不到切入点?网上的学习资料铺天盖地,越刷越焦虑——有人说入门先啃高等数学,有人说必须先精通算法,还有人劝你直接上手框架实战…就在昨天,还有CSDN的粉丝私信我:“我已经系统学Python半年了,可看AI工程师的招聘JD时,还是摸不清自己差在哪,该补什么。这种迷茫感,我太懂了。

2026-01-14 14:43:36 272

原创 收藏!大模型入门必学:RAG核心原理、实战指南与学习路径全解析

RAG(Retrieval-Augmented Generation,检索增强生成)本质上是一套解决大语言模型(LLM)“知识盲区”和“胡说八道”问题的技术方案。其核心逻辑是将大模型自身固化在权重中的“参数化知识”(相当于大脑里记住的模糊知识),与外部可随时更新的“非参数化知识”(相当于精准的参考资料库)相结合。

2026-01-14 14:42:27 658

原创 【深度收藏】大模型时代的企业级AI Agent:技术原理与商业落地全解析

大模型技术正从信息处理者升级为任务执行者,AI Agent作为重要载体重构人机协作模式。文章分析大模型知识处理能力、产业解析、行业应用及企业级AI Agent核心能力与场景,展望未来发展。2025年将成为AI Agent从概念验证到规模落地的关键转折点,企业应优先在高频、规则明确、数据丰富的场景试点,逐步实现全链条智能化升级。经济学家保罗·克鲁格曼曾说“经济萧条、通货膨胀、战争都会让一个国家贫困,唯有生产率的提高可以让它富裕起来。

2026-01-14 14:35:58 470

原创 收藏必读!2027年AGI降临:大模型时代的生存指南与程序员转型策略

为什么是2027年?不是2030,也不是2050?Leopold提到了一个核心逻辑:智能爆炸(Intelligence Explosion)。现在的GPT-4还只是在学习人类写过的废话。但一旦智能跨过某个临界点,AI会获得一种能力——给自己写代码。他对AI的发展画了一个图,可以看出拐点后将呈指数上升的趋势,他预言这个拐点就会出现在2027年!Claude AI的CEO在对美国政府的一份报告中说到,首批AGI将在2026年底出现。一旦AGI诞生,它会瞬间分化出数亿个分身。

2026-01-14 14:31:07 361

原创 【技术干货】AI Agent设计模式完全指南:从思维链到多智能体协作的架构演进

AI Agent五大设计模式解析:平衡推理成本与执行效果 本文系统梳理了当前主流的AI Agent设计模式,包括:1)思维链(CoT)作为推理基础;2)ReAct模式通过思想-行动-观察循环提升准确性;3)Plan & Execute解耦规划与执行以提高效率;4)ReWOO通过变量传递节省Token;5)LLM Compiler利用DAG实现并发执行。文章指出,AI Agent设计本质是在推理成本与执行效果间寻求平衡,不同模式各有优劣:ReAct灵活性高但效率低,Plan & Execute

2026-01-13 19:34:28 315

原创 【必藏】传统PM转型AI PM完全指南:从0到1构建你的AI产品能力,逆袭之路全解析

本文详细介绍了传统产品经理如何转型为AI产品经理的完整路径。文章阐明AI PM与传统PM的核心区别在于处理确定性vs概率性逻辑,指出应用层是普通PM转型的最佳战场。系统讲解了AI PM所需的核心技能:技术边界理解、工程思维和场景定义能力,并提供四步实战路径:沉浸式体验AI工具、掌握提示工程技巧、低代码构建Demo以及持续学习输出。转型关键是保持用户洞察力与模型能力的结合,成为"产品架构师"与"创意总监"的结合体。

2026-01-13 19:33:42 203

原创 深度解析:智能体反思模式:解决AI输出质量问题的终极方案,开发必藏!

本文系统阐述了智能体设计中的反思模式,这是一种通过"执行-评估-优化"闭环迭代实现自我优化的机制。文章指出反思模式通过让智能体主动发现问题并修正错误,可显著提升输出质量,特别适用于专业创作、代码生成等复杂场景。作者详细介绍了反思模式的四大流程步骤,并重点推荐"生产者-批评者"双智能体模型这一高效实现方式。文章还提供了明确评估标准、设定终止条件等四个关键实践要点,并通过撰写行业报告的实际案例展示了反思模式的应用价值。最后强调反思模式是智能体从"会做"

2026-01-13 19:32:53 211

原创 【珍藏】一文掌握Bridgic动态拓扑:三种编排模式的代码实现与原理解析

本文介绍了Bridgic框架中的三种编排模式及其实现方式:静态编排通过预先定义worker及其依赖关系实现确定性执行;动态编排借助ferry_to API实现运行时路径选择,支持分支和循环逻辑;自主编排则允许在执行过程中动态修改拓扑结构,满足AI系统的高度动态性需求。框架基于动态有向图(DDG)架构,提供从声明式到命令式的多层级API,通过异步编程和Deferred Task机制实现灵活调度,为LLM时代的软件开发提供了新的编程范式。

2026-01-13 19:31:56 184

原创 收藏级干货!2025年AI工程化范式转移:从Chatbot到Agent的系统架构演进全解析

本文深入分析了2023-2025年AI工程生态的范式转移,从Chatbot到Agent与系统工程的演进。详细介绍了现代LLM应用的四层架构(智能层、能力层、连接层、编排层),探讨了智能体的定义、认知架构及多智能体系统,对比了Tools与Skills的区别,解析了MCP协议的重要性,以及LangChain与LangGraph的演进。文章强调,AI工程已从传统软件思维转向智能体思维,未来核心竞争力在于定义问题、设计认知流程与AI协作共创的能力。

2026-01-13 19:31:03 522

原创 收藏!从零入门大模型:概念、应用与学习路线全攻略

参数数量庞大、具备深层神经网络结构,能处理复杂任务并展现出强泛化能力的机器学习模型。其参数规模通常从数百万起步,目前顶尖模型已达到万亿级别。海量参数规模:这是大模型最显著的标志。大量的权重和偏置参数,让模型能捕捉数据中的细微模式和复杂关联,为强性能奠定基础;深层网络结构:大模型通常包含数十甚至数百层隐藏层,通过分层特征提取,能从原始数据中学习到从低级到高级的抽象特征;高算力需求:海量参数的训练和推理,需要高性能GPU、TPU等专用硬件支撑,普通计算设备难以满足需求;广泛任务适配性。

2026-01-13 14:33:16 341

原创 【收藏必备】大模型技术全解析:从架构到微调,一文掌握大模型核心知识

本文系统介绍了大模型发展历程、分类及核心技术,涵盖基础模型、通用模型和推理模型的区别,详细解析了Transformer架构、MOE架构以及预训练、微调、对齐等构建流程。特别介绍了DeepSeek-V3和DeepSeek-R1两种典型模型的特点与应用场景,以及指令微调、RLHF等关键技术,为开发者提供了全面的大模型学习指南。

2026-01-13 14:29:37 666

原创 LangGraph大模型Agent构建指南:从零开始,一篇搞定(收藏必学)

LangGraph 最核心的设计理念就是将智能体流程图形化建模。在 LangGraph 中,每一个操作单元(比如大模型调用、函数执行、判断逻辑)都是一个节点(Node),节点之间通过边(Edge)相连接,构成了完整的智能体工作流。特别是,它支持条件边(Conditional Edges),可以根据状态决定分支路径,类似于传统的 if-else 语句。这样构建出来的智能体,就像画流程图一样简单、直观,极大地增强了结构可视性与逻辑解耦能力。✅Cyclic Graphs(循环图)

2026-01-13 14:22:00 685

原创 【建议收藏】从零到精通:大模型技术岗位能力要求与职业发展指南

2026年大模型产业快速发展,人才需求激增。根据工信部文件,大模型岗位分为5大方向8个岗位,能力要求涵盖专业知识、技术技能、工程实践三维度。行业呈现高学历、高技能、高薪资特点,企业偏爱有创新精神和学习能力的应届生。文章提供了职业规划建议和学习资源,帮助不同背景人才在大模型领域找到适合自己的发展路径。

2026-01-13 14:08:27 297

原创 收藏!2025-2030 AI就业风口指南:5大热门岗位+零基础学习路线,冲刺月薪2.5W+

世界经济论坛明确预测,到2030年全球将新增1.7亿个就业机会,其中人工智能(AI)领域以最快增速成为核心增量市场。从市场规模来看,全球AI产业版图持续扩大,Precedence数据显示,2024年全球AI市场规模已达6382.3亿美元,预计到2034年将飙升至3.68万亿美元,2025-2034年复合年增长率高达19.2%。

2026-01-12 15:12:29 618

原创 收藏!字节/阿里后端校招面试全流程拆解,应届生小白也能看懂的上岸指南

对于计算机专业应届生来说,每年初秋的互联网大厂校招季,既是决定职业起点的关键机遇期,也是检验四年专业积累的实战大考。作为去年成功斩获字节跳动、阿里巴巴等多家头部大厂后端开发Offer的亲历者,同时也是Newton哥技术团队核心成员,我结合2025最新面试趋势,完整还原技术与思维的双重博弈过程,把从简历投递到Offer到手的每一个核心环节拆解得明明白白,无论你是刚入门的小白,还是正在冲刺的程序员,这份指南都能帮你少走弯路。很多应届生备战校招时会陷入“题海战术”的误区,结果往往是知识点没吃透,面试时还是抓不住重

2026-01-12 15:09:43 621

原创 告别LLM幻觉!LangGraph构建可控AI Agent实战教程(必收藏)

本文详细介绍LangGraph框架如何解决LLM幻觉问题并构建可控AI Agent。突破传统LangChain的DAG限制,支持循环迭代、状态管理和人机协作。文章解析了LangGraph架构(全局状态、节点、边),通过翻译Agent示例展示实际应用,探讨状态持久化和人机协同等特性,并展示如何实现ReAct、Plan-and-Solve、Reflection和多智能体协作等执行范式,为构建可靠AI Agent系统提供完整解决方案。

2026-01-12 14:56:08 731

原创 收藏!2026校招大厂疯抢AI人才,小白/程序员必看的大模型入局指南

又到一年校招旺季,对于计算机相关专业应届生,以及渴望跻身技术领域的小白而言,2026年的求职市场,正呈现出机遇与挑战并存的新格局。回望过去数年,互联网行业增速放缓、竞争白热化,招聘名额收缩成为常态,不少应届生都深陷“一岗难求”的求职焦虑。但今年,市场风向已然逆转——从7月下旬开始,阿里巴巴(BABA.NYSE;09988.HK)、字节跳动、腾讯(00700.HK)、美团(03690.HK)、京东(JD.NASDAQ;

2026-01-10 14:42:10 657

原创 收藏!大模型逼近人类?程序员&小白别慌,这两条路让你不被替代

当大模型在数据分析、内容创作、代码生成等诸多领域不断逼近甚至超越人类表现时,“我们会不会被AI替代”的疑问,成了很多人尤其是程序员和行业小白的焦虑来源。但事实上,这种焦虑完全可以缓解。破解替代危机的答案很明确:一是牢牢守住人类独有的“情感共鸣与原创创造力”这一核心壁垒;二是遵循“打不过就加入”的务实思路,主动拥抱AI浪潮催生的新岗位。

2026-01-10 14:41:19 780

原创 收藏备用!康奈尔报告厘清AI Agent与Agentic AI核心差异,大模型学习者必看

不少刚入门大模型的开发者和小白,很容易混淆AI Agent与Agentic AI这两个高频概念。近期康奈尔大学发布的研究报告,精准厘清了二者的核心边界:AI Agent是基于LLM构建的单任务工具,仅具备有限自主性;而Agentic AI是多智能体协同系统,核心优势在于能自主完成目标拆解-任务分配-结果整合的全流程。简单来说,前者擅长搞定高频重复的单一任务,后者则能攻克高复杂度的动态业务流程。

2026-01-10 14:35:30 444

原创 收藏必看!RAG与CAG全面对比:如何选择最适合你的LLM知识整合方案

摘要:本文系统对比了检索增强生成(RAG)与缓存增强生成(CAG)两种大语言模型知识整合技术。RAG通过实时检索外部数据确保知识时效性,适用于动态更新场景,但存在架构复杂和延迟问题;CAG通过预加载信息实现快速响应,适合稳定知识需求,但面临信息过时风险。文章详细分析了两者的技术原理、优劣势及适用场景,并提供了技术选型框架。研究发现,RAG在医药、金融等变化快速领域更具优势,而CAG更适合客服等重复性场景,同时探讨了混合方案的潜在价值,为开发者提供了全面的技术决策参考。

2026-01-09 18:46:02 796

原创 收藏!AI、ML、DL和NLP的区别与联系,一篇彻底搞懂

文章系统解析了人工智能(AI)、机器学习(ML)、深度学习(DL)和自然语言处理(NLP)的层级关系与区别。ML作为最广泛的概念,是从数据中学习模式的方法;DL是ML的子集,基于多层神经网络实现自动特征学习;NLP则是将ML/DL应用于语言任务的应用领域。文章通过对比分析各类技术的适用场景、优缺点及实际案例,帮助读者根据数据规模、任务复杂度和计算资源等因素选择最合适的技术方案,强调务实开发策略的重要性。

2026-01-09 18:45:08 749

原创 2026企业AI Agent规模化落地:四大核心趋势详解,收藏这份从0到1的实战指南

2026年被视为企业级AI Agent规模化应用的关键拐点,四大技术趋势推动落地:MCP协议实现系统安全连接,GraphRAG提升知识响应精准度,AgentDevOps保障AI可靠性,RaaS模式让价值可量化。当前AI Agent已在营销、招聘等场景形成可复用样本,通过连接协议、知识管理、观测治理和结算标准四大维度实现工程化落地。未来发展方向是让AI Agent成为"岗位专家",通过数据提纯和强化学习向金牌员工能力对齐,最终实现人机协同新生态。

2026-01-09 18:43:25 635

原创 【收藏】1536维vs512维:低维嵌入模型如何实现RAG性能翻倍?颠覆认知的技术选型实践

本文介绍了MyClone平台将OpenAI的1536维嵌入模型替换为512维Voyage 3.5 Lite的实践案例。通过采用Matryoshka Representation Learning等创新技术,在降低维度的同时保持了检索质量,实现了存储成本减少66%、检索延迟降低50%、速度提升2倍的显著优化效果。这一实践验证了技术选择应优先考虑产品需求而非单纯追求参数指标,为RAG系统优化提供了重要参考。

2026-01-09 18:41:04 755

原创 收藏必备!大模型面试全攻略:从自我介绍到项目拷打的通关指南

自我介绍是对背景和工作经历的概述,所以尽可能突出你自己做的比较好且有把握的项目,这样面试官在提问的时候也会因为你自己提到的内容而往这方面走。不过有一些面试官就是会找简历上和自己业务相关或者感兴趣的项目来进行提问,所以你在简历上提到的项目都需要非常熟悉。

2026-01-09 14:47:50 687

原创 收藏!从20万到60万:Java工程师的智能体转型之路,技术人高薪新蓝海指南

一场精准的职业赛道切换,让普通Java开发工程师实现了年薪从20万到60万的跨越式增长。如今,AI智能体领域已不再是模糊的技术概念,而是成为技术人突破职业瓶颈、抢占高薪高地的新蓝海。2024年初,张伟还是一家软件公司的传统Java开发工程师,日常深耕ERP系统维护,重复着增删改查的常规工作,月薪1.6万,年薪刚过20万。面对一眼能望到头的职业轨迹,以及技术迭代带来的年龄焦虑,他不止一次陷入迷茫:“难道这辈子就困在传统开发的舒适区里,等着被新人替代?

2026-01-09 14:44:17 594

原创 智能体工程:大模型应用落地的生死线 | 2026年最值得收藏的Agent开发指南

【定义与使命】所以,智能体工程就是:将不确定的基于LLM的系统, 迭代优化为可靠生产级应用的工程化过程。它强调一个循环往复的迭代周期: 构建 → 测试 → 部署 → 观测 → 优化,再重复。在智能体工程中,“上线”不再是终点,而是获取真实反馈、持续改进的起点。其原因在于:传统软件工程依赖确定性逻辑,你可以通过严格的单元测试和代码审查,在上线前杜绝大部分bug;而Agent 系统内部包含概率模型(LLM),无法靠预先测试保证万无一失。

2026-01-09 14:36:00 827

原创 收藏!后端/新手转大模型实战指南:避开90%人踩的坑,6个月可求职

今天这篇内容,我拒绝堆砌教科书式的理论——那些论文库里一搜就有的公式定理,对想快速入局的人来说,远不如“选对方向”“避开深坑”来得实在。内容全是实战干货,每一条都是我对接企业需求、带学员实战时踩过的坑、总结的经验。

2026-01-08 15:35:43 291

原创 收藏备用!拆解、对比与优化:LLM工具智能体的五种任务规划与执行模式

大语言模型(LLM)驱动的AI智能体,在借助工具(Tools)完成复杂任务时展现出了惊人的潜力。但对小白和开发者而言,让智能体“不瞎忙活”——合理规划步骤、精准执行任务,才是落地应用的关键。本文将系统化拆解LLM工具智能体的5种核心任务规划与执行模式,结合实操场景对比优劣,并分享实用优化技巧,帮你快速掌握智能体任务调度的核心逻辑。

2026-01-08 14:16:57 695

原创 收藏!AI智能体从原理到实战:程序员&小白入门大模型必看指南

AI智能体(AI Agent)是指能够在特定环境中自主感知信息、推理决策、执行动作,以实现预设目标的智能实体。它模拟人类"感知-思考-行动"的认知循环,核心特征在于无需持续外部干预,即可独立完成任务拆解、路径规划、资源调用和结果优化,同时具备环境交互能力、动态适应能力和持续学习潜力。

2026-01-08 14:14:06 729

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除