自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(772)
  • 收藏
  • 关注

原创 Agent大模型为什么能称霸AI时代?

大模型 Agent是由大规模预训练模型(如 GPT、BERT、PaLM 等)作为核心引擎的智能代理。它们具备强大的自然语言理解和生成能力,能够在给定的上下文中执行指令、进行对话、完成复杂任务。大模型 Agent 结合了传统 AI 系统中的自动化和机器学习技术,允许代理不仅根据输入进行反应,还能够通过互动和反馈不断优化其行为和策略。

2024-10-28 11:50:51 298

原创 一个超强的构建Agent的大模型框架

向大家推荐一个超强的构建Agent的大模型框架——PhidataPhidata是一个用于构建智能Agent系统的Python框架。它让你可以方便地创建具有记忆力、知识、工具使用能力和推理能力的AI助手,并将其作为一个完整的软件应用运行(包括数据库、向量数据库、API等)。同时phidata还提供了对Agent系统的监控、评估和优化功能。使用phidata,你可以:构建拥有记忆、知识、工具使用和推理能力的智能Agent。Phidata会管理Agent的状态、记忆和知识,存储在数据库中。

2024-10-28 11:47:32 579

原创 中国软件技术发展洞察和趋势预测研究报告2025(先行版)

报告将以丰富的数据、专家访谈为基础,回顾 2024 年技术进展的关键节点,并对 2025 年的技术发展方向进行深入探讨。2024 年,大模型与生成式 AI 持续深耕行业应用,带来了技术与商业模式的深刻变革。,完整版内容将于后续发布,敬请持续关注 InfoQ 研究中心与中欧 AI 与管理创新研究中心的进一步动态。在趋势预测方面,在 InfoQ 研究中心前期研究成果的基础上,研究中心也邀请了来自行业和产业的 87 名专家,通过问卷的形式表达各自的见解,并将问卷结果展现在本次发布的。

2024-10-28 10:30:21 252

原创 大模型在华为推荐场景中的探索和应用 | AICon

大模型对于推荐系统的信息增益:大模型能够提供丰富的领域知识和世界知识,尤其是在资讯类场景中,它能够提供强大的通用世界知识,增强推荐系统的信息背景。大模型具备强大的推断能力,能够更深入地理解用户,包括用户兴趣的推断、意图的识别等,为推荐系统提供更多可能性。突破传统定位,重塑推荐流程:大模型不仅仅局限于特征编码或打分排序,它在流程控制和对话式推荐场景中也能发挥作用,提升用户交互体验。语义协同兼顾,空间融合。

2024-10-28 09:54:06 595

原创 可平替国外AI的7个免费国产AI大模型!

想必很多人都知道国外鼎鼎大名的AI大模型吧!其实国外很多AI大模型都是要付费的,而且得翻墙出去,如果你不能翻墙,国外很多AI大模型工具是用不了的。那么有没有能够替代国外AI大模型的呢?答案是当然的,关键是免费,虽然说在功能上面和国外的AI大模型比较的话有些差距,但是只要你会使用,国产AI大模型还是可以解决你的很多实际问题的。下面我们就来详细介绍下这几款国产AI大模型。再正式介绍国产AI大模型之前,我们先了解下国外几款比较出名的付费AI大模型都有哪些?然后在具体介绍下这些AI大模型的国产平替版。

2024-10-26 17:44:38 613

原创 大家都说通义大模型好,究竟好在哪?

都说国产大模型“通义千问”能打,到底是真强还是智商税?今天就带你看看,这个国产“AI猛将”凭什么火出圈!如今的AI领域竞争激烈,提到大模型,许多人第一反应可能是GPT、Llama等大牌“选手”。然而,阿里巴巴的“通义千问”却让不少开发者拍案称好。今天,我们就来一起揭开通义千问的“好”是如何做到的。2023年4月,阿里巴巴推出通义千问,选择了“全开源”的策略,成为全球开发者关注的焦点。

2024-10-26 17:35:56 627

原创 万字长文学会对接 AI 模型:Semantic Kernel 和 Kernel Memory,工良出品,超简单的教程

目录AI 越来越火了,所以给读者们写一个简单的入门教程,希望喜欢。很多人想学习 AI,但是不知道怎么入门。笔者开始也是,先是学习了 Python,然后是 Tensorflow ,还准备看一堆深度学习的书。但是逐渐发现,这些知识太深奥了,无法在短时间内学会。此外还有另一个问题,学这些对自己有什么帮助?虽然学习这些技术是很 NB,但是对自己作用有多大?自己到底需要学什么?

2024-10-26 17:14:46 607

原创 大模型 | 实战:从一张订单照片入手,大模型带你快速成为高手

对每个审计人员而言,大模型既不是骗子,也不是无所不能。需要做的是在迎头赶上,拿到AI时代的入场券。因为,那些我们过去引以为傲的,在时代的列车呼啸而过的时候,已经开始土崩瓦解!

2024-10-22 17:52:32 782

原创 吹爆上海交大的大模型实战教程!!

今天分享一个,有相关教程文档和Slides,目前是,还是挺火的。

2024-10-22 17:48:06 178

原创 长上下文能取代RAG吗?

实验中的Llama3.1-8B模型,在EN.QA数据集和EN.MC数据集上,上下文长度为16K时达到性能峰值,而Llama3.1-70B模型在EN.QA上的最佳性能点为16K,在EN.MC上为32K。尽管目前长上下文的研究逐渐获得偏爱,但作者认为超长的语境会导致LLM对相关信息的关注度降低,最终使答案质量下降,而本文提出的OP-RAG则能够用更少的token换来更高的答案质量。相比之下,没有RAG的Llama3.1-70B,在充分利用128K上下文的情况下,只达到了34.32的F1-score。

2024-10-19 14:43:46 603

原创 检索和记忆: 面向自适应笔记增强的检索增强生成

检索增强生成 (RAG) 通过引入外部知识,减轻了大型语言模型 (LLM) 在开放域问答任务 (OpenQA) 中生成的事实错误和幻觉输出问题。然而,对于复杂的问答,现有的 RAG 方法使用 LLM 主动预测检索时机,并直接使用检索到的信息进行生成,而不管检索时机是否准确反映了实际的信息需求,或者是否充分考虑了先前检索到的知识,这可能导致信息收集和交互不足,从而产生低质量的答案。

2024-10-19 14:35:07 818

原创 大模型落地路线图研究报告(2024年)(附下载)

它涵盖了从基础设施、数据资源到算法模型、应用服务,再到安全可信的全方位分析,旨在帮助各行业明晰业务发展需求,设计合理的大模型建设方案,并通过实践案例展示了大模型在实际应用中的潜力和效果。落地挑战与路线图:报告识别了大模型在落地过程中面临的挑战,如技术选型、工程实践的复杂性,并提出了一套包括现状诊断、能力建设、应用部署和运营管理的落地路线图。行业应用场景:报告详细讨论了大模型在不同行业中的应用场景,包括研发设计、生产制造、经营管理等,并强调了大模型在推动行业数字化转型中的作用。

2024-10-18 15:49:13 136

原创 快速了解大模型!

想象一下,如果你的大脑能够记住整个图书馆的所有书籍,并且能够理解每本书的内容,那么你就拥有了类似大模型的能力。大模型是人工智能领域的一种机器学习模型,它们通过学习大量的数据,获得了类似于人类理解语言、图像和声音的能力。

2024-10-18 15:17:47 630

原创 震惊!懂AI的产品经理,已经碾压同行了!

在即将过去的一年里,AI向我们展示了其恐怖的能力。一键生成一键生成一键生成随着AI的迅速崛起,它就像是一份美味可口的美食,人人都想去分一杯羹。所有行业都因AI技术催生出新的业务形态。互联网大厂里传统产品经理的职业要求也随之提高,与之相比,AI产品经理便成了时下互联网大厂招聘热门岗位。虽然AI产品经理职位前景广阔,但求职者大概率需要具备综合能力与持续学习的意愿才能脱颖而出。现阶段,企业也希望招聘到的人才。然而,人才市场上的高水平AI产品经理数量有限,导致优质岗位对人才的竞争非常激烈。

2024-10-17 14:32:07 907

原创 爽了!这个行业未来五年彻底爽了!

简单来说,AI产品经理就是在AI领域里玩产品的大佬。他们的。

2024-10-17 11:46:14 264

原创 如何评估检索增强生成(RAG)系统:RAGAS框架与基于LlamaIndex的实现代码

忠实度衡量生成的答案对检索到的上下文的忠实程度。高忠实度意味着答案中的信息严格来源于检索到的上下文,而不是模型的"幻觉"。答案相关性评估生成的答案与原始查询的相关程度。高相关性意味着答案直接且准确地回应了用户的问题。上下文相关性衡量检索出来的信息有多么贴合你的问题。高上下文相关性意味着检索系统能够准确定位与查询相关的信息。上下文召回率评估检索到的上下文是否包含回答问题所需的全部信息。这个指标需要预先标注的"黄金标准"答案。上下文精确度衡量检索到的相关上下文在结果中的排序质量。

2024-10-14 16:34:13 1027

原创 AI大模型源码解析|打造你的专属GitHub智能答疑助手!

如官网介绍,PeterCat是专为社区维护者和开发者打造的智能答疑机器人解决方案。支持用户在平台中通过对话模式快速搭建一个 Github 仓库的智能答疑机器人,内置 提 issue、查 issue、回 issue、Discussion 回复、PR Summary、Code Review、项目信息查询 基础能力,也可以通过自托管部署方案和一体化应用 SDK 集成至项目仓库。目前在 PeterCat 平台中,已有 9 个前端方向典型应用的智能答疑机器人。以Ant Design。

2024-10-14 14:23:36 591

原创 大模型技术基础学习路线,想要学好大模型应该具备哪些能力?

大模型技术的基础学习,是未来在大模型领域能否站稳脚跟的关键”随着大模型技术的发展,越来越多的人开始进入大模型领域,但大模型作为一门技术,因此它的本质上是一个工具,因此这也让学习大模型有了不同的学习方向。从工具的角度来看,学习一个工具主要有两个方向,一个是使用工具,一个是制造工具;而今天我们主要讲的是后者,也就是怎么制造一个大模型工具,它需要哪些技术基础。大模型基础技术路线‍‍‍下面主要从以下几个技术基础讲解一下大模型的学习路线:‍‍‍‍‍‍‍理论基础‍编程基础深度学习框架。

2024-10-11 18:02:40 585

原创 探索多模态大模型的最佳技术路线

在本文中,详细介绍了构建视觉语言模型(VLMs)的完整教程,强调了架构、数据和训练方法在开发流程中的重要性。通过对当前最先进方法的深入分析,突出了各种设计选择的优缺点,并提出了改进模型的潜在研究方向。接着,本文详细阐述了构建Idefics3-8B的实际步骤,这是一种在文档理解任务中表现显著提升的VLM,特别是通过引入Docmatix数据集实现了这一进步。通过公开发布模型和数据集,作者希望为下一代负责任且开放的VLMs的发展做出贡献。

2024-10-11 17:51:03 586

原创 逆天20w赞!吴恩达+Open AI打造《大模型通关指南》

在这个系列教程中,《PromptEngineering for Developers》针对入门LLM开发者,深入浅出地介绍了如何构建Prompt并利用OpenAI提供的API实现包括总结、推断、转换等多种常用功能,是入门LLM开发的经典教程;LLM(Large Language Models)正在逐步改变人们的生活,对于开发者来说,如何利用LLM提供的API快速、便捷地开发具备更强大能力、集成LLM的应用程序,以实现更新颖、更实用的功能,是一项急需学习的重要技能。

2024-10-10 17:16:17 243

原创 知识蒸馏:大模型(LLM)中的模型压缩与知识转移技术

知识蒸馏是一种机器学习技术,其核心在于将大型、复杂模型(通常称为“教师模型”)中的知识转移到小型、更高效的模型(即“学生模型”)中。这一技术最初由Geoffrey Hinton及其同事在2015年提出,旨在解决在资源受限的现实环境中部署复杂模型时面临的挑战。知识蒸馏的主要目标是,在不显著牺牲精度的情况下,将大型模型中的知识压缩到小型模型中,从而使其更适合在资源有限的设备上部署,并相对于从头开始训练的模型表现出更好的性能。

2024-10-10 16:51:19 937

原创 怎么成为年薪53万的AI产品经理?我分析了200份大厂的招聘要求

我在 BOSS 直聘搜索AI产品经理,筛选了公司规模在10000人以上的公司,清洗整理后得到 229 个岗位信息,分析得到如下信息:按最低薪资算,平均年薪 40.2 万;取薪资范围均值,平均年薪 52.9 万;只有 31% 的公司给 12 薪;66%的岗位在北京,其次是杭州 12%;本科是底线,不限学历的只有 1.7%(4 个);半数以上(52%)要求 5-10 年工作经验,但也有 11% 给了无经验职场人机会;约一半(47.2%)岗位标注了 B/G 端产品属性或者经验。

2024-10-10 16:31:53 747

原创 单张4090能运行的最强开源大模型是哪个?

2024年8月更新:先说结论: gemma2 27B 8位量化版gemma2用最小参数量实现了超过三倍参数的模型能力,超过llama3 70B,特别中文翻译能力,比qwen2 70B还要强。9B也非常出色,可以在6G显卡运行不要迷信f16, 参数大才是王道,越大参数模型量化损失越小,宁可要32B的量化也不要14B的f16精度。下面介绍一个本地部署gemma2 27B/9B极简方案,不需要有任何技术知识储备,电脑没有GPU也可以,内存足够就行。

2024-10-07 15:17:40 672

原创 国产大模型谁是王者?做好应用才是!

Github上的一个名为Awesome LLMs In China的项目帮我们详细的总结了截至目前为止的所有国产大模型的基本情况。这个列表中目前共有大模型243个,我真的是不禁感慨自己之前的孤陋寡闻,万万没想到国产大模型家族已经如此庞大。不过可惜的是,有很多模型既无官网也无APP,只有一个名字和一个出品公司,虽然名字都很霸气,但性能怎样却是无从得知了。

2024-10-07 10:58:02 798

原创 大模型技术进阶路线,有了基础应该怎么进阶?

高性能大模型的打造,是一项复杂的系统性工程在上一篇文章中讲了学习大模型的基础路线,而如果是对有一定基础的人来说,应该怎么进阶呢?也就是说大模型更加高级的技术栈有哪些?一个好的基础能够让你在学习的道路上事半功倍,但绝对不是学习的终点,大模型技术也不外如是。大模型的进阶学习路线在上一篇的文章中介绍了大模型的基础学习路线,比如基础理论,编程,深度学习框架等等。以上技术都属于大模型技术的基础,不论是做学术研究,还是个人学习都已经足够;

2024-10-06 17:54:34 722

原创 多模态大模型: 盘点&Highlights part3——Gemini系列

Hi大家好,我叫延捷,是一名计算机视觉算法工程师,也是叉烧的老朋友了。我们计划发布一系列关于多模态大模型的文章,帮助大家快速、精准地了解多模态大模型的前世今生,并且深入各个多模态大模型领域优秀的工作,希望能给大家一个脉络性的盘点,一起学习,共同进步。上一期我们介绍了Qwen-VL和其最近的延伸Qwen2-VL。

2024-10-06 17:33:37 1137

原创 清华大学:大模型安全实践白皮书(附完整PDF下载)

该文件详细分析了金融、医疗、政务、人力资源以及智能助理等领域中大模型的安全实践案例,探讨了安全性、可靠性、可控性技术的最新研究进展,并针对大模型的风险挑战提出了系统化的应对策略。报告还展望了大模型技术的未来发展趋势,并提出了包含政府监管、生态培育、企业自律、人才培养、测试验证在内的“五维一体”治理框架,旨在为确保大模型技术的健康发展和安全可靠应用提供指导和建议。治理建议:提出了“五维一体”的治理框架,包括政府监管、生态培育、企业自律、人才培养、测试验证等方面的建议。

2024-10-05 17:15:00 372

原创 AI大模型:2024军事大模型评估体系白皮书(附下载)

评估指标体系是军事大模型基准测评体系框架的核心组成部分,围绕强敌研究、作战指挥、装备研制、训练管理和联勤保障等5类军事业务场景,针对军事信息系统高风险、高动态、强对抗的任务特点,构建一-整套科学、客观、量化的评估指标,全面评估军事大模型在不.同维度、领域和场景中的性能表现,为用户开展大模型选型提供标准化的测评参考,为大模型系统的上线运行提供可信的衡量标准,并为大模型的优化改进提供明确方向。(1)军事大模型评估数据:军事大模型评估数据包括外部开源、主流评估以及用户领域等方面的评估数据集。

2024-10-04 14:00:00 388

原创 国内AI大模型已近80个,哪个最有前途?

Github上的一个名为Awesome LLMs In China的项目帮我们详细的总结了截至目前为止的所有国产大模型的基本情况。这个列表中目前共有大模型243个,我真的是不禁感慨自己之前的孤陋寡闻,万万没想到国产大模型家族已经如此庞大。不过可惜的是,有很多模型既无官网也无APP,只有一个名字和一个出品公司,虽然名字都很霸气,但性能怎样却是无从得知了。

2024-10-03 16:00:00 1027

原创 教育领域大模型技术与应用

2011 年 7 月至 2022 年 2 月就职于科大讯飞研究院,历任科大讯飞 AI 教育研究院副院长,AI 研究院认知群教育条线负责人,学习机业务线教研总监,重点负责教育领域个性化学习业务,包括个性化学习相关模型研究,产品设计,服务研发等,其研发的多项成果已经成功应用到讯飞智学网、讯飞智能学习机等相关产品中,于 2018 年获得讯飞首届华夏创新奖,获 2020 年吴文俊人工智能科学技术奖科技进步一等奖。

2024-10-02 09:00:00 733

原创 《奶奶看了都会的 coze 大模型入门》

AI Agent是指人工智能代理(Artificial Intelligence Agent),是一种能够感知环境、进行决策和执行动作的智能实体。这个智能实体是由4个部分组成的:AI Agent = LLM(大模型) + Planning(规划) + Memory(记忆) + Tools(工具)举个例子,说明 Planning、Memory、Tools 的重要性。比如,我想要写一本关于大模型技术的书,仅仅依靠LLM 的能力是不够的,因为没有:Tools: 通过搜索引擎访问知网等数据库找到最新论文。

2024-10-01 15:15:00 842

原创 微软新综述:大模型RAG系统的4层境界!

嘿,大家好!这里是一个专注于AI智能体的频道~今天分享这篇很干的文章!通过对RAG系统的用户Query进行难度区分,进而可以将系统划分为4个等级。使用外部数据增强的大型语言模型 ( LLMs ) 在完成现实世界任务方面表现出了卓越的能力。外部数据不仅增强了模型的特定领域专业知识和时间相关性,而且还减少了幻觉的发生率,从而增强了输出的可控性和可解释性。将外部数据集成到LLMs中的技术,例如检索增强生成(RAG)和微调,正在获得越来越多的关注和广泛应用。

2024-09-28 15:12:32 659

原创 转行ai产品经理(非常详细)从零基础入门到精通,看完这一篇就够了

想转行AI产品经理,最主要需要有和。我们可以先从AI产品经理岗位的招聘要求来看看AI产品经理需要具备什么经验和能力。以下是我从BOSS直聘上找到的几份AI产品经理的岗位描述。岗位1岗位2岗位3从这几份岗位介绍可以看出,AI产品经理不仅需要具备通用的产品设计能力、分析调研能力、沟通和项目管理能力,还需要掌握面试时,也会重点考察AI技术知识和AI产品经验,建议着重准备这两方面。

2024-09-27 17:57:53 892

原创 什么是AIGC?什么是大模型?具体有什么应用?

AIGC,英文全称是Artificial Intelligence Generated Content,翻译成中文的大白话意思就是“人工智能生成的内容”。比如AI(Artificial Intelligence,人工智能)生成文本、图片、视频、音频等,都属于AIGC。你既可以把AIGC理解成为像UGC、PGC这种的内容生产方式,也可以把它理解为一种内容生成的技术。通过AIGC这四个字母也可以看出来,这是一项依赖于AI技术的生产方式,但这里的AI技术到底是指的什么?简单来说就是各种模态的大模型。

2024-09-25 18:00:39 1001

原创 产品经理找不到工作应该怎么办?

去年空窗期长达半年的我,太能体会这个问题背后的无奈了,下面就结合我个人的经历,来实实在在的回答一下。都说这两年找工作难,产品经理找工作是更难啊,具体原因不做探讨,直接上对策。

2024-09-25 17:46:39 954

原创 大模型榜单汇总整理

大型语言模型(LLM)评估榜单提供了对不同模型性能的标准化比较,涵盖了从通用能力到特定领域应用的多个方面。本文主要从通用大模型,垂直领域的医学、法律和金融领域的评估榜单。这些榜单根据最新的模型进行评估,有助于开发者了解模型的优势和局限性,推动语言模型的发展和优化。

2024-09-24 15:31:19 1031

原创 目前最全,188+26个国产大模型!

国家互联网办公室于8月最新披露的数据显示,截至目前。此外,地方网信部门也积极行动,登记在册的AI大模型数量达到了26家。本文罗列了大模型完整清单、常用大模型的特点以及国内大模型发展趋势。这展现了大模型领域的快速发展,造就了百家争鸣的景象。特点与技术:文心一言是百度推出的知识增强型对话语言模型,拥有千亿级参数量,在知识问答、创意生成等任务上表现出色。它具备跨模态、跨语言的深度语义理解与生成能力。优点:能够听懂复杂提示词,胜任代码理解与调试任务,支持图像生成和处理、语音合成与识别、视频数据处理等。

2024-09-24 15:08:52 765

原创 AI Agent入门指南(非常详细)零基础入门到精通,收藏这一篇就够了

LLM-Based Agent最开始的定义来自于这个图:图表 1:大模型Agent这个图虽然把LLM-Based Agent的关键要素Memory、Tools、Planning、Action都画出来了,但是各个模块的功能没有定义,感觉并不是很好。这里以其他论文中的1个图来说明:图表 2:大模型Agent框架大模型Agent的能力这么强化,那么怎么才能生产出1个可用的Agent呢?下面我们分别介绍1个学术界的大模型Agent和1个工业界的大模型Agent,来看看完成1个Agent需要哪些工作。

2024-09-23 14:43:03 906

原创 一文读懂AI大模型:从入门到精通的全景解析

目前大部分的模型架构都是decode-only(casual LM),少量的有encode-decode,encode-only,为啥大部分LLM是decode-only的,原因可能是以下几点:从mask的角度看,decode-only的输入是一个对角矩阵,对角矩阵是满秩矩阵,表达能力更强。在计算softmax时,假如x=[1,3,2,4],分成2块,第一块[1,3],取最大值3,[-2, 0],第二块[2,4],最大值为4,[-2, 0],聚合最大值[3,4],为4,[-3,-1,-2, 0]。

2024-09-23 11:38:37 1251

原创 AI大模型从零基础入门到精通,看完这一本书就够了

经过最近几周的反复调研,我终于找到了一个全面的大模型入门教程。这门课程来自Sebastian Raschka的新书Build a Large Language Model From Scratch。这本书是目前全网最完整的讲解大模型技术细节的教程。注意,不是教你如何用大模型,而是如何训练大模型。学完可以对大模型的预训练有个初步的理解。但正如上篇测评中所说,Andrej只介绍了预训练这一步。而预训练模型是没法直接拿来用的,一般需要做指令微调(instruct fine-tune)才能让模型听从用户的要求。

2024-09-23 10:31:36 564

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除