此开源的视频生成模型:包含 PyTorch 模型定义、预训练权重和推理/采样代码
📜 要求
下表为运行HunyuanVideo模型(batch size = 1)生成视频的要求:
模型 | 设置 (高度/宽度/框架) | 去噪步骤 | GPU 峰值内存 |
---|---|---|---|
混元视频 | 720px1280px129f | 三十 | 60GB |
混元视频 | 544px960px129f | 三十 | 45GB |
- 需要支持 CUDA 的 NVIDIA GPU。
- 我们已经在单个 H800/H20 GPU 上进行了测试。
- 最低限度:720px1280px129f 所需的最低 GPU 内存为 60GB,544px960px129f 所需的最低 GPU 内存为 45G。
- 建议:我们建议使用具有 80GB 内存的 GPU 以获得更好的生成质量。
- 测试的操作系统:Linux
🛠️ 依赖项和安装
首先通过下方的命令来克隆存储库:
bash 代码解读复制代码git clone https://github.com/tencent/HunyuanVideo
cd HunyuanVideo
Linux 安装指南
我们提供了一个environment.yml
用于设置 Conda 环境的文件。Conda 的安装说明可在此处获得。
我们推荐 CUDA 版本 11.8 和 12.0+。
bash 代码解读复制代码# 1. Prepare conda environment
conda env create -f environment.yml
# 2. Activate the environment
conda activate HunyuanVideo
# 3. Install pip dependencies
python -m pip install -r requirements.txt
# 4. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.5.9.post1
此外,HunyuanVideo还提供了预先构建的Docker镜像:
bash 代码解读复制代码# 1. Use the following link to download the docker image tar file (For CUDA 12).
wget https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/hunyuan_video_cu12.tar
# 2. Import the docker tar file and show the image meta information (For CUDA 12).
docker load -i hunyuan_video.tar
docker image ls
# 3. Run the container based on the image
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged docker_image_tag
🧱 下载预训练模型
下载预训练模型的详细信息显示在此处,或者在HuggingFace上下载【点击前往】共26G左右。
🧱下载文本编码器
HunyuanVideo采用MLLM模型和CLIP模型作为文本编码器。
- MLLM 模型(text_encoder 文件夹)
HunyuanVideo 支持不同的 MLLM(包括 HunyuanMLLM 和开源 MLLM 模型),现阶段我们尚未发布 HunyuanMLLM,建议社区用户使用Xtuer提供的llava-llama-3-8b,可通过以下命令下载
bash 代码解读复制代码cd HunyuanVideo/ckpts
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers
为了节省模型加载的GPU内存资源,我们将的语言模型部分分离llava-llama-3-8b-v1_1-transformers
成text_encoder
。
bash 代码解读复制代码cd HunyuanVideo
python hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py --input_dir ckpts/llava-llama-3-8b-v1_1-transformers --output_dir ckpts/text_encoder
- CLIP 模型(text_encoder_2 文件夹)
我们使用OpenAI提供的CLIP作为另一个文本编码器,社区用户可以通过以下命令下载此模型
bash 代码解读复制代码cd HunyuanVideo/ckpts
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
🔑 推理
我们在下表中列出了我们支持的高度/宽度/框架设置。
分辨率 | 时长=9:16 | 高/宽=16:9 | 高/宽=4:3 | 高/宽=3:4 | 高/宽=1:1 |
---|---|---|---|---|---|
540p | 544px960px129f | 960px544px129f | 624px832px129f | 832px624px129f | 720px720px129f |
720p(推荐) | 720px1280px129f | 1280px720px129f | 1104px832px129f | 832px1104px129f | 960px960px129f |
使用命令行
css 代码解读复制代码cd HunyuanVideo
python3 sample_video.py \
--video-size 720 1280 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--use-cpu-offload \
--save-path ./results
更多配置
我们列出了一些更有用的配置以便于使用:
参数 | 默认 | 描述 |
---|---|---|
--prompt | 没有任何 | 视频生成的文字提示 |
--video-size | 720 1280 | 生成的视频的大小 |
--video-length | 129 | 生成视频的长度 |
--infer-steps | 50 | 采样步数 |
--embedded-cfg-scale | 6.0 | 嵌入式分类器免费指导量表 |
--flow-shift | 7.0 | 流匹配调度程序的移位因子 |
--flow-reverse | 错误的 | 如果反向,从 t=1 -> t=0 学习/采样 |
--seed | 没有任何 | 生成视频的随机种子,如果没有,我们初始化一个随机种子 |
--use-cpu-offload | 错误的 | 使用 CPU 卸载来加载模型以节省更多内存,这对于高分辨率视频生成是必要的 |
--save-path | 。/结果 | 生成视频的保存路径 |
免费体验入口
HunyuanVideo 在线使用:【点击前往】
开源项目地址
-
- GitHub仓库:github.com/Tencent/Hun…
- HuggingFace模型库:huggingface.co/tencent/Hun…
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓