leetcode6021 字符中最多数目的子字符串

leetcode6021 字符中最多数目的子字符串 medium

力扣74周双周赛的第二题

自己做的时候思路是这题根本不需要除了pattern[0]pattern[1]之外的字符,然后困在了如何判断子序列上,后来转变思路,直接将插入算在最后。

题目描述:

给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 pattern ,两者都只包含小写英文字母。

你可以在 text 中任意位置插入 一个 字符,这个插入的字符必须是 pattern[0] 或者 pattern[1] 。注意,这个字符可以插入在 text 开头或者结尾的位置。

请你返回插入一个字符后,text 中最多包含多少个等于 pattern 的 子序列 。

子序列 指的是将一个字符串删除若干个字符后(也可以不删除),剩余字符保持原本顺序得到的字符串

示例 1:
输入:text = "abdcdbc", pattern = "ac"
输出:4
解释:
如果我们在 text[1] 和 text[2] 之间添加 pattern[0] = 'a' ,那么我们得到 "abadcdbc" 。那么 "ac" 作为子序列出现 4 次。
其他得到 4 个 "ac" 子序列的方案还有 "aabdcdbc" 和 "abdacdbc" 。
但是,"abdcadbc" ,"abdccdbc" 和 "abdcdbcc" 这些字符串虽然是可行的插入方案,但是只出现了 3 次 "ac" 子序列,所以不是最优解。
可以证明插入一个字符后,无法得到超过 4 个 "ac" 子序列。
示例 2:
输入:text = "aabb", pattern = "ab"
输出:6
解释:
可以得到 6 个 "ab" 子序列的部分方案为 "aaabb" ,"aaabb" 和 "aabbb" 。
想要找到最大子序列,我想着要么插入pattern[0]要么插入pattern[1],所以一开始代码如下:
public long maximumSubsequenceCount(String text, String pattern) {
        char n1 = pattern.charAt(0),n2=pattern.charAt(1);
        String text1 = n1+text;
        String text2 = text+n2;
        return Math.max(countSub(text1,pattern),countSub(text2,pattern));
    }

也就是说觉得要么在首部插入或者在尾部插入,但是在判断子序列上出现了问题:

public long countSub(String text, String pattern){
        char n1 = pattern.charAt(0),n2=pattern.charAt(1);
        int res = 0;
        int left=0,right=1;
        for(right=1;right<text.length();right++){
            if(text.charAt(right) == n2){
                for (left=0;left<right;left++){
                    if (text.charAt(left) == n1){
                        res++;
                    }
                }
            }
        }
        return res;
    }

代码中对pattern[0]pattern[1]交替出现的情况不能有效处理。

于是对整个方法进行推翻
public long maximumSubsequenceCount(String text, String pattern) {
        long count = 0, count1 = 0, count2 = 0;
        for (char c : text.toCharArray()) {
            count += c == pattern.charAt(1) ? count1 : 0;
            count2 += c == pattern.charAt(1) ? 1 : 0;
            count1 += c == pattern.charAt(0) ? 1 : 0;
        }
        return count + Math.max(count1, count2);
    }

直接用count,count1,count2来进行子序列的计数。
text转char数组然后遍历
count1,count2分别代表pattern.charAt(0),pattern.charAt(1)的个数
在遍历过程中,要是出现pattern.charAt(1)就证明在此之前的pattern.charAt(0)数量都可以与当前pattern.charAt(1)结合形成多的一个子序列,就对count加上pattern.charAt(0)数量。

最后Math.max(count1, count2)是对插入最后的一个字符后增加数进行计算,看俩哪个多就可以决定是插入pattern的哪位。
只进行了一遍for()循环,时间复杂度为O(n)
只申明了几个新变量,空间复杂度为O(1),力扣击败Java双百

力扣双百

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值