SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS笔记

1. Introduction

  1. 提出可以直接在图上操作的卷积神经网络,使用谱图卷积的局部一阶近似来确定卷积结构。
  2. 用于半监督学习,进行节点分类

2. 图上的快速近似卷积

先给出多层GCN基于下面的逐层传递规则:
在这里插入图片描述
A ~ = A + I N \tilde{A}=A+I_N A~=A+IN I N I_N IN为单位矩阵,A为邻接矩阵,即 A ~ \tilde{A} A~为图的邻接矩阵加上自环。 D ~ i i = ∑ j A ~ i j \tilde{D}_{ii}=\begin{matrix} \sum_{j} \end{matrix}\tilde{A}_{ij} D~ii=jA~ij(度矩阵)。 W ( l ) W^{(l)} W(l)为可训练参数。下面证明这种传递规则可使用谱图卷积的局部一阶近似来确定。

2.1 谱图卷积

2.1.1 第一代图卷积

对于输入信号 x ∈ R N x\in R^N xRN,在傅里叶域取滤波器 g θ = d i a g ( θ ) g_\theta=diag(\theta) gθ=diag(θ) θ ∈ R N \theta\in R^N θRN
在这里插入图片描述
∗ * 为卷积操作。 U U U是归一化后的图的拉普拉斯矩阵L的特征向量构成的矩阵, L = I N − D − 1 2 A D − 1 2 = U ∧ U T L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}=U\wedge U^T L=IND21AD21=UUT ∧ \wedge 是拉普拉斯矩阵L的特征值组成的对角矩阵。

U T x U^Tx UTx就是 x x x的图傅里叶变换。

g θ g_\theta gθ可视为是拉普拉斯矩阵 L L L的特征值组成的对角矩阵 g θ ( ∧ ) g_\theta(\wedge) gθ()

第一代卷积借助傅里叶变换,将原始信号 x x x变换到频域,在频域乘上一个信号,再做傅里叶逆变换还原到空域。由傅里叶变换的特性有,在频域相乘相当于空域卷积,这样就回避了空域上对不确定结构的图进行卷积的问题。
在这里插入图片描述

2.1.2 第二代图卷积

第一代图卷积计算开销大,对于大规模的图,计算特征向量计算开销很大。而且没有空间的局部性,每次卷积都要考虑所有的结点。

为了避免这一问题,减少计算量,有人提出一个特殊的卷积核设计方法,将 g θ ( ∧ ) g_\theta(\wedge) gθ()用切比雪夫多项式 T k ( x ) T_k(x) Tk(x)进行k阶逼近。新的卷积核设计为
在这里插入图片描述
切比雪夫多项式 T k ( x ) T_k(x) Tk(x)

T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x ) T_k(x)=2xT_{k-1}(x)-T_{k-2}(x) Tk(x)=2xTk1(x)Tk2(x)

T 0 ( x ) = 1 T_0(x)=1 T0(x)=1

T 1 ( x ) = x T_1(x)=x T1(x)=x

∧ ~ = 2 λ m a x ∧ − I N \tilde\wedge=\frac{2}{\lambda_{max}}\wedge-I_N ~=λmax2IN λ m a x \lambda_{max} λmax是L的最大特征值

θ ′ ∈ R K \theta^\prime\in R^K θRK为切比雪夫多项式的系数

将该卷积核代入图卷积公式得到
在这里插入图片描述
L ~ = 2 λ m a x L − I N \tilde L=\frac{2}{\lambda_{max}}L-I_N L~=λmax2LIN

这个公式为拉普拉斯算子的K阶切比雪夫多项式形式,即它受到距离中央节点K步以内的节点影响。
这里的加速版本的GCN,将参数减少到了K个,并且不再需要对拉普拉斯矩阵做特征分解,直接使用即可。

2.1.3 分层线性模型

第三代GCN令K=1,即每层卷积只考虑直接邻域,类似于CNN中 3 × 3 3\times3 3×3的卷积核

网络深度加深,宽度减少(深度学习的经验,深度>宽度)
对第二代卷积公式
在这里插入图片描述
λ m a x = 2 , k = 1 \lambda_{max}=2,k=1 λmax=2,k=1可得
在这里插入图片描述
这里运用的是上面提过的归一化后的拉普拉斯矩阵 L L L是归一化后的拉普拉斯矩阵,进一步简化,令 θ 0 ′ = − θ 1 ′ \theta^\prime_0=-\theta^\prime_1 θ0=θ1,由于 L = I N + D − 1 2 A D − 1 2 L=I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} L=IN+D21AD21特征值在[0,2],可进一步约束为
在这里插入图片描述
最终通过应用多通道卷积,并表达为矩阵形式,可以得到如下的最终形式
在这里插入图片描述
其中, X ∈ R N × C , Θ ∈ R C × F , Z ∈ R N × F X\in R^{N\times C},\Theta\in R^{C\times F},Z\in R^{N\times F} XRN×C,ΘRC×F,ZRN×F N , C , F N,C,F N,C,F分别代表节点个数,通道个数(每个节点的属性是C维的),卷积核个数。

3. 半监督节点分类

运用两层GCN
在这里插入图片描述

参考

https://blog.csdn.net/weixin_39373480/article/details/90741121

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值