图神经网络(二十六) Graph Random Neural Networks for Semi-Supervised Learning on Graphs, NeurIPS2020

本文出自清华大学唐杰老师团队。
在本文中,提出了一个简单而有效的框架图随机神经网络(GRAND)来解决图神经网络过拟合、过平滑、抗扰动性差等问题,设计了一种随机传播策略来进行图数据扩充。
受到图像上研究的“一致性正则化”(consistency regularized training)启发,设计半监督学习的图数据增强和一致性正则化策略。具体来说,每个节点的特征可以部分(dropout)或全部随机删除,然后在图上传播受扰动的特征矩阵,因此,每个节点都能够对特定的邻域不敏感,增加了GRAND的鲁棒性。随机传播的设计可以自然地将特征传播和特征变换分离开来,而特征传播和特征变换在大多数gnn中是相互耦合的,这从侧面解决了图神经网络的过平滑问题。最后,我们从理论上说明了随机传播和一致性正则化可以增强每个节点与其多跳邻域之间的分类置信度一致性。

GRAPH RANDOM NEURAL NETWORKS

在这里插入图片描述
本文模型如图所示。首先设计一种传播策略(a),随机生成多个图数据增广(b),在此基础上提出了一种一致性正则化训练©,以提高半监督环境下的泛化能力。

Random Propagation for Graph Data Augmentation

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
混合神经网络用于少样本学习。少样本学习是指在给定的样本数量非常有限的情况下,如何进行有效的学习和分类任务。混合神经网络是一种结合了神经网络和其他模型的方法,用于解决少样本学习问题。 首先,混合神经网络神经网络与其他模型结合起来,以充分利用它们在不同任务上的优势。神经网络可以有效地处理结构数据,并捕捉节点之间的关系,而其他模型可能在处理其他类型的数据时更加优秀。通过将它们结合起来,混合神经网络可以在少样本学习中更好地利用有限的数据。 其次,混合神经网络可以通过在训练过程中使用一些预训练模型来提高学习效果。预训练模型是在大规模数据集上进行训练得到的模型,在特定任务上可能有较好的性能。通过将预训练模型与神经网络结合,混合神经网络可以在少样本学习中利用预训练模型的知识,以更好地适应有限的数据。 最后,混合神经网络还可以通过设计适当的注意力机制来提高学习效果。注意力机制可以使网络更加关注重要的特征和关系,忽略无关的信息。在少样本学习中,选择性地关注有限的样本和特征对于提高学习的效果至关重要。混合神经网络可以通过引入适当的注意力机制来实现这一点,以提取和利用关键信息。 综上所述,混合神经网络是一种用于少样本学习的方法,它结合了神经网络和其他模型的优势,并利用预训练模型和适当的注意力机制来提高学习效果。这种方法对于在有限数据条件下执行有效的学习和分类任务非常有帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值