题目来源:https://leetcode-cn.com/problems/shortest-unsorted-continuous-subarray/
大致题意:
给出一个不完全的升序数组。找出数组的最短子序列,将其升序排序后,整个数组就会是升序序列。
返回子序列长度。
思路
根据题意可知,该待排序子序列排序后整个数组有序。
那么该子序列的左右侧子序列都有序。
于是找出该左右边界即可。
双扫描线
在刚刚的讨论中,得出只需找到子序列的左右边界。接下来给出左右边界的判断方法:
- 左边界:左边界左边的数应该小于边界位置数(左边的序列应为升序,若其大于当前边界数,则证明当前边界数至少应在当前左边数的左边,那么它应该加入待排序子序列)。
- 右边界:右边界右边的数应该大于边界位置数(右边的序列应为升序,若其小于当前边界数,则证明当前边界数至少应在当前右边数的右边,那么右边数应该加入待排序子序列)。
于是可设置双扫描线,从前往后扫描获取最右的右边界,从后往前扫描最做的左边界。
最后再特别判断边界是否更新,排除数组已完全有序的情况。
代码:
public int findUnsortedSubarray(int[] nums) {
int maxNum = Integer.MIN_VALUE;
int minNum = Integer.MAX_VALUE;
int left = -1;
int right = -1;
int n = nums.length;
for (int i = 0; i < n; i++) {
// 从前往后找目前的最大值
// 若当前数大于之前的最大值,则代表仍然升序
if (maxNum < nums[i]) {
maxNum = nums[i];
}
// 若当前数小于之前的最大值,则代表当前数应该在当前位置左边
// 即当前位置属于待排序子序列,更新右边界
else {
right = i;
}
// 从后往前找目前的最小值
int reverse = n - 1 - i;
// 若当前数小于之后(因为倒序)的最小值,代表仍然升序
if (minNum > nums[reverse]) {
minNum = nums[reverse];
}
// 若当前数大于之后的最小值,代表当前数应该在当前位置右边
// 即当前位置属于待排序子序列,更新左边界
else {
left = reverse;
}
}
return right == -1 ? 0 : right - left + 1;
}