力扣 581. 最短无序连续子数组

题目来源:https://leetcode-cn.com/problems/shortest-unsorted-continuous-subarray/

大致题意:
给出一个不完全的升序数组。找出数组的最短子序列,将其升序排序后,整个数组就会是升序序列。
返回子序列长度。

思路

根据题意可知,该待排序子序列排序后整个数组有序。
那么该子序列的左右侧子序列都有序。
于是找出该左右边界即可。

双扫描线

在刚刚的讨论中,得出只需找到子序列的左右边界。接下来给出左右边界的判断方法:

  • 左边界:左边界左边的数应该小于边界位置数(左边的序列应为升序,若其大于当前边界数,则证明当前边界数至少应在当前左边数的左边,那么它应该加入待排序子序列)。
  • 右边界:右边界右边的数应该大于边界位置数(右边的序列应为升序,若其小于当前边界数,则证明当前边界数至少应在当前右边数的右边,那么右边数应该加入待排序子序列)。

于是可设置双扫描线,从前往后扫描获取最右的右边界,从后往前扫描最做的左边界。
最后再特别判断边界是否更新,排除数组已完全有序的情况。

代码:

public int findUnsortedSubarray(int[] nums) {
        int maxNum = Integer.MIN_VALUE;
        int minNum = Integer.MAX_VALUE;
        int left = -1;
        int right = -1;
        int n = nums.length;
        for (int i = 0; i < n; i++) {
            // 从前往后找目前的最大值
            // 若当前数大于之前的最大值,则代表仍然升序
            if (maxNum < nums[i]) {
                maxNum = nums[i];
            }
            // 若当前数小于之前的最大值,则代表当前数应该在当前位置左边
            // 即当前位置属于待排序子序列,更新右边界
            else {
                right = i;
            }
            // 从后往前找目前的最小值
            int reverse = n - 1 - i;
            // 若当前数小于之后(因为倒序)的最小值,代表仍然升序
            if (minNum > nums[reverse]) {
                minNum = nums[reverse];
            }
            // 若当前数大于之后的最小值,代表当前数应该在当前位置右边
            // 即当前位置属于待排序子序列,更新左边界
            else {
                left = reverse;
            }
        }
        return right == -1 ? 0 : right - left + 1;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值