一部手机就能收到4张卡的短信,这是什么神仙软件

对于有2张以上手机卡的用户来说,如何在一部手机上就能完成短信接收,这难到了不少英雄,因为现在的手机最多只能插2张卡,炎炎夏日,如果不想多带一部手机,那就只能随身备个卡针来物理换卡

那有没有这样一个方法,只带一部手机的情况下,还能实现多卡多待,完成多个手机卡的短信接收操作,这就是今天我要给大家介绍的软件 —— 短信转发器,这是一款完全面免费开源的安卓应用,所以在安全性方面大家可以放心

短信转发器工作流程图

官方制作了这么一张软件的工作流程图,可以清楚的知道这软件是怎么运行的,都有哪些功能,如果这张图看起来很吃力的话,那没有关系,因为它使用起来是很简单的,下面跟着我一起来看看怎么用的吧

软件界面图

界面设计相对简洁,有些词看起来可能很陌生,但不要紧,因为用到的并不多,只需要设置一下发送通道和转发规则,手机有电,软件在运行就可以了

转发到手机短信

发送通道的类型非常多,有十几种,最适合小白用的还是手机短信和邮箱,像企业微信、钉钉这些,你要注册企业,tg又要魔法,总之就是阻碍非常多

手机短信的设置是最简单的,但是如果手机卡没有包含免费短信套餐的话,那发1条短信就是1毛钱,就算有免费短信套餐,也承受不了那么大的转发量,所以不是很划算

转发到邮箱

这里以QQ邮箱举例,在发送通道这里添加电子邮箱通道,名称就随便写了,然后填写你的QQ邮箱和授权码(我会在下面告诉你怎么获取),最后再填写一个收件的邮箱即可,点击保存

邮箱授权码获取

登录网页版的QQ邮箱,点击设置-账号,下拉找到POP3/IMAP服务,跟着他的提示一步步走去开启SMTP并获取授权码,获取到的授权码再填写到密码那一栏

转发规则设置

发送通道选择刚刚创建的,如果不想折腾,那就和我一样,卡槽和匹配字段这里选择全部,如果只想转发某些特定的短信,那就可以在短信内容这里匹配相应的关键词,比如 验证码/快递之类的,点击保存,那么恭喜你,看到这里,短信转发你已经学会了

在手机上安装邮箱软件,登录你填写的收件邮箱,就可以愉快的收到各种短信了

常见问题

转发短信不成功?软件被杀后台,那是因为你没有开启对应的设置,首先软件自身的转发短信广播要打开,然后软件权限的自启动、省电策略改为无限制,以及读取发送短信的权限都要打开

下载链接

SmsForwarder: 短信转发器——监控Android手机短信、来电、APP通知,并根据指定规则转发到其他手机:钉钉机器人、企业微信群机器人、飞书机器人、企业微信应用消息、邮箱、bark、webhook、Tele****机器人、Server酱、PushPlus、手机短信等。包括主动控制服务端与客户端,让你轻松远程发短信、查短信、查通话、查话簿、查电量等。(V3.0 新增)PS.这个APK主要是学习与自用,如有BUG请提

备用链接

https://pan.quark.cn/s/ea1b0e8b4704

以上就是本文的全部内容,我们下期再见,拜拜

### YOLOv8指定GPU训练无效总是使用第解决方案 对于YOLOv8在尝试多GPU训练时遇到的问题,即无论设置何种环境变量始终默认使用第一个GPU的情况,可以采取如下措施: 当面对`CUDA_VISIBLE_DEVICES=0,1 python train.py`这样的命令行配置不起作用的情形时,种可能的原因在于使用的框架版本可能存在某些局限性或Bug[^2]。为了克服这障碍,建议采用更直接的方法控制GPU资源分配。 #### 方法:修改源码中的设备设定逻辑 如果官方提供的接口未能满足需求,则可以直接编辑YOLOv8项目的源代码文件,在负责初始化模型实例化的部分显式指明所期望调用的具体GPU ID列表。通常这涉及到调整导入PyTorch库之后创建网络结构之前的部分,例如: ```python import os os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ``` 这段脚本应当放置于程序入口处尽早执行的位置,从而确保后续所有的CUDA操作都能识别到正确的物理设备映射关系。 #### 方法二:利用Docker容器化部署 另种思路是借助Docker技术构建独立运行环境,并通过编写合适的docker-compose.yml文件精确管理宿主机上的硬件资源共享策略。这种方式不仅有助于隔离不同项目之间的依赖冲突,还能简化跨平台迁移流程以及团队协作开发体验。 具体来说就是在启动服务前先声明好nvidia-container-toolkit插件支持下的gpu选项参数,像这样: ```yaml version: '3.7' services: yolov8_train: image: custom_yolov8_image runtime: nvidia environment: - NVIDIA_VISIBLE_DEVICES=all - NVIDIA_DRIVER_CAPABILITIES=compute,utility deploy: resources: reservations: devices: - capabilities: [gpu] count: 2 ``` 以上两种途径均能有效改善原有单固定模式下难以灵活切换目标计算节点的局面,使得研究人员可以根据实际场景自由调配可用算力资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值