Python之基础Numpy库(更新中...)

Numpy大数据基础类库,重要性不言而喻。
环境::python3.7
编译器:Anaconda中的spyder.
代码块:

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""
import numpy as np 

lst = [[1,2.1,3],[2,4,6]]
np_lst =  np.array(lst, dtype=np.float)
np_lst.astype(int)

print(np_lst.dtype)

print(np_lst.shape)

print(np_lst.ndim)

print(np_lst.itemsize)  #每个元素的大小

# some array 
print(np.zeros([2,3]))

print(np.ones([2,3]))

print(np.random.rand(2,3))  #2*3 

print(np.random.choice([10,20,30]))#从中随机选取一个


# array distribution.
print(np.random.rand(2,1,4))  #2*1 *4

#创建指定范围内的一个数
np_uniform = np.random.uniform(0,100,size=5)
print(np_uniform)

#Numpy.arange(start, stop, step) 的均匀分布
np_arange = np.arange(2,10,2)
print('arange:',np_arange)

#Numpy.linspace(start, stop, N)  的均匀分布
np_linspace = np.linspace(1,5,3)
print('linspace:',np_linspace)

#Numpy.random.normal(loc, scale, size) 正态分布 生成4行5列的二位数组
np_normal = np.random.normal(loc=1.75,scale=0.1,size=[4,5])
print('normal:',np_normal)

#beta分布.
np_beta = np.random.beta(1,2,12)
print('beta:',np_beta)


#numpy operation
#numpy copy
after_array = np_normal[1:3,2:4].copy()
print('array_copy:',after_array)

#numpy sort 
np_sort = np.sort(np_beta)
print('sort:',np_sort) #整体排序
sort_col = np.sort(np_beta, axis=0)#行排序
print('col-sort:',sort_col) 
sort_row = np.sort(np_normal, axis=1)#列排序
print('row-sort:',sort_row) 

#numpy unique
print('提取唯一元素:',np.unique(np_arange, return_index=True, return_counts=True))
print('提取唯一元素:',np.unique(np_arange, return_inverse=True ))

#转置
print(np_sort.T)

#reshape():
c = np.array([[[0,1,2],[10,12,24]],[[100,101,12],[101,112,113]]])
c.reshape(3,2,2)

#resize()
a = np.array([[[0, 1, 2],
               [10, 12, 13]],
              [[100, 101, 102],
                [110, 112, 113]]])

b = np.array([[[0, 1, 2],
               [10, 12, 13]],
              [[100, 101, 102],
                [110, 112, 113]]])

a.resize(3,1)

b.resize(3,5)

print(a)

print(b)

#条件运算 - where
re_score = np.where(b < 80, 0,90)
print(re_score)
#整个矩阵的最大值
result = np.amax(b)
print(result)
#求每一列的最大值
resultrow = np.amax(b, axis=0)
print(resultrow)
# 求每一行的最小(1表示行)
resultcol = np.amin(b, axis=1)
print(resultcol)

#平均值
score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
result_mean = np.mean(score, dtype=np.int)
print('mean:',result_mean)
col_mean = np.mean(score, axis=0)
print('row_mean:',col_mean)
row_mean = np.mean(score, axis=1)
print('row_mean:',row_mean)

#方差
result_std = np.std(score)
print(result_std)
std_row = np.std(score,axis=0)
print(std_row)
std_col = np.std(score,axis=1)
print(std_col)

#数组的运算(+-*/,//,%)
score[:, :] = score[:, :]+5 #循环数组行和列,每一个数值都加5
print(score)
score[0:1, 0:1] = score[0:1, 0:1]*5
print(score)
score[0:1, 0:1] = score[0:1, 0:1]//5
print(score)
score[:, :] = score[:, :] % 5

#数组间的运算,数组的shape要一样。
#+ = np.add(a,b) ,- = np.substract(a,b)
#* = np.multiply(a,b),/ = np.divide(a,b) 
sum = score + score
sum1 = np.add(a,b)
print(sum)
ints = np.intersect1d(a,b) #查找两个数组中的相同元素
print(ints)
setdiff = np.setdiff1d(a,b)   #查找在数值a中不在b中的元素
print(setdiff)
unionld = np.union1d(a,b)        #查找在数值a中不在b中的元素
print(unionld)

#矩阵的计算
#(M行,N列)*(N行,Z列)=(M行,Z列)
st_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
radio = np.array([[0.4],[0.6]])
result_dot = np.dot(st_score, radio)
print(result_dot)

#矩阵拼接
v1 = [[0, 1, 2, 3, 4, 5],
      [1, 1, 2, 3, 4, 5]]

v2 = [[2, 4, 5, 3, 4, 5],
      [4, 1, 2, 3, 4, 5]]

np_vstack = np.vstack((v1,v2)) #vstack(参数:tuple)
print(np_vstack)

#矩阵水平拼接
np_hstack = np.hstack((v1, v2)) #参数:tuple
print(np_hstack)

#矩阵删除:
#Numpy.delete(参数 1:a,数组;参数 2:elements,删除的对象;参数 3:axis=0/1)
OriginalY = np.array([[1, 2, 3],
                       [4, 5, 6],
                       [7, 8, 9]])
print('delete:',np.delete(OriginalY, [0, 2]))
print(np.delete(OriginalY, [0, 2], axis=0))
print(np.delete(OriginalY, [0, 2], axis=1))

#矩阵的添加
array1 = np.array([[1, 2, 3],
                       [4, 5, 6],
                       [7, 8, 9]])
print(np.append(array1,[0,2]))
print(np.append(array1,[[1,2,3]],axis=0))#追加一行
print(np.append(array1,[[1],[2],[3]],axis=1))#追加一列

#矩阵插入
arrat_insert = np.insert(array1,1,[11,12,13],axis=1)
print('insert:',arrat_insert)

#文件加载
file = np.loadtxt(fname=r'C:\Users\Lee\Desktop\aa.txt',dtype=str,
                  comments='#',delimiter='!',skiprows=0,
                 usecols=None)
print(file)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值